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Preface

At first examination, the results presented at the PE Workshop II and documented in
these proceedings are biased! Indeed, the criticism can easily be made that all but a few
of the presenters "fine-tuned" their models to get the best answer. After all, they were
provided with the available reference solutions several weeks before the workshop was
held. Given a thorough knowledge of a model's strengths and limitations, plus a good
knowledge of the physics of underwater acoustic propagation, any expert modeler
could "tune" his or her model so that it could closely match the reference answers.

We agree with this criticism, for it embodied the precise philosophy we wished to
adopt. We sought from the expert modelers the answers to two questions: Using your
insight and in-depth knowledge of a particular computer model and the physical
situation to be modeled, what is the greatest accuracy that you can attain with this
particular model? What techniques, choices of parameters, etc., did you employ in
getting the "fine-tuned" answer, and why did you make these choices?

By studying the examples presented in these proceedings, the less-than-expert model
user may be better equipped to select an appropriate model for a particular problem and
to apply it, as did these experts, so that the best possible answer can be obtained.
Understanding the limitations of a model (as well as its capabilities) and fine-tuning it
to the problem at hand is what constitutes the "art of model application." Very few
underwater acoustic models can be "black-boxed" so that a novice can use the model
and always get the best answer for that model. Indeed, even for an expert, many
variations of the same problem may be required to obtain a "sensible/meaningful"
solution.

A model that one would like to "black-box," namely, Navy Standard PE, was included
in this workshop. The modelers who applied Navy Standard PE were expert in its
application and limitations, but their application of the model remained within the
capability of any knowledgeable user, i.e., with few exceptions, no special
modifications or parameter selections were made-just the application of the model.
Its performance on the workshop test problems could be considered (1) remarkably
"good," considering that it is an applications-operations model (rather than a research
model); or (2) remarkably "bad," if one requires precise agreement with the reference
solutions-the level of performance is often determined by the expectations of the user.

Selecting a particular model, applying it in a knowledgeable fashion, and interpreting
its predictions within the model's domain of validity constitute the "science of model
application." Successful underwater acoustic modeling often blends both the science
and the art ot motdeling. We hope that these proceedings will serve the underwater
acoustic modeling community by providing a foundation upon which to make
knowledgeable choices, and by providing benchmark problems and solutions against
which new underwater acoustic models may be tested.
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Summary

Perhaps the most important and encouraging results of this PE Workshop were that
underwater acoustic parabolic equation (PE) models from both the 6.1 basic research
modeling community and the 6.3 Navy operational modeling community were applied
to the same set of test problems--each test problem designed to push the PE models to
their limits-and each of the two communities' PE models did extremely well, given
the requirements and constraints imposed by each community. The PE models
developed by the 6.1 basic research modeling community were able to produce results
for the test case problems that were benchmark accurate. This is a definite requirement,
since the basic research community uses these models to identify, to isolate, and to
understand the physical mechanisms involved in underwater acoustic propagation and
scattering in highly complex underwater environments. The 6.3 Navy operational
community is also interested in accurate model predictions, but the need for
computational speed, portability, and the ability to run a computer in the field (micro
or desk-top) is also of utmost importance-to the extent that trade-offs among
accuracy, speed, and portability must be optimized. The results from this workshop
demonstrate that the underwater acoustic PE models used by both modeling
communities are performing at their expected levels.

The PE approximation to the elliptic wave equation was first introduced into the
underwater acoustic propagation community in 1973 by Hardin and Tappert at a Navy
workshop sponsored by the Acoustic Environment Support Detachment (AESD).
Following that introduction, other researchers began to use the PE approximation and
to extend its limits.
In 1981 a workshop solely devoted to the PE approach to modeling underwater acoustic
propagation was sponsored by the Long Range Acoustic Propagation Program, now the
ASW Environmental Acoustic Support (AEAS) Program. It was hosted by the Naval
Ocean Research and Development Activity, now part of the Naval Research Laboratory
(NRL). The objectives of that first PE workshop were threefold:

" provide a forum for those active in theoretical and applied PE model development
to exchange ideas, describe their PE models, identify problems or deficiencies in the
PE approach, and stimulate new ideas and approaches.

"* compare model results for a set of common underwater acoustic problems.
"* provide the AEAS program with information on the current state of PE computer

models; using this information, make decisions for developing a Navy-supported PE
model that could meet the needs of the AEAS program.

The first workshop was a success. The Navy-supported PE model efforts evolved into
the present Navy Standard PE model. Although the first PE workshop was sponsored
by the Navy's 6.3 Applications Program, the results of that workshop have been
extremely useful to both the basic research and the applications communities.

Since the first PE workshop, there has been a virtual explosion of developments in the
underwater acoustics PE community, as well as in the supporting technologies of
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Summary

computer science and environmental data basing. The synergy among these
technologies have produced underwater acoustic calculations that are more accurate
and faster than thought possible in 1981.

The progress in underwater propagation modeling, especially in advancing the
PE approach, gave impetus for holding a second PE Workshop. It was decided that this
PE Workshop II would not be restricted to just the PE technique; the discussion of other
innovative techniques would also be encouraged. The workshop was to be highly
technical and interactive. Invited participation was restricted to those who would
actively participate in the workshop presentations and discussions.

The initial announcement of PE Workshop II was made on 6 September 1990, and
suggestions for test cases were solicited from the underwater acoustics community.
After assimilating the test case suggestions, a letter was sent on 18 January 1991
defining the test cases that would be used for the workshop. To many, the use of test
cases would seem to indicate a competition among the many different PE approaches.
Nothing could have been farther from the intention of the workshop organizers. It was
their intent to make the results of the workshop as meaningful to the underwater
acoustic community as possible. In this spirit the workshop would be noncompetitive,
i.e., it would not be a "bake-off' among PE models. The best possible result from each
model was the objective. When available, benchmark reference solutions of each test
problem were provided to each participant prior to the workshop. A set of reference
solutions was forwarded to all invited participants on 23 April 1991. To further
enhance a noncompetitive spirit, the participants were encouraged to rework the
problems based on what they had learned during the workshop, and then submit their
final manuscripts.

The PE Workshop II was divided into two parts. The first part was for presentations by
the participants on either the PE approach that they used or some other innovative
approach that might be applicable or of interest to the underwater acoustics
community. The second part was for comparisons and discussions of the test cases.
Each part of the workshop was designed to be very informal. Each test case was
introduced and, if available, a reference solution was presented. Then anyone that
wished could show their PE model results. All results were compared to each other and
to the reference results. This comparison process went smoothly, assisted by the use of
a standard plot scale that had been designated for each test case. The test cases were as
follows:

Test Case 1: Lloyd's Mirror - Wide-Angle Propagation
Test Case 2: Conservation of Energy in Range-Dependent Propagation
Test Case 3: Range-Dependent Shear Wave Propagation
Test Case 4: Backscatter from a Waveguide Discontinuity
Test Case 5: Propagation in Constantly Changing Environment
Test Case 6: Underwater Acoustic Model Predictions vs. Measured Field Data
Test Case 7: Long-Range Propagation in a Leaky Surface Duct

The results from the PE Workshop II indicate that present PE models can solve several
difficult underwater acoustic problems (e.g., highly range-dependent propagation over
shear-supporting ocean bottoms, including backscatter). The models were exercised by
experts in acoustic modeling (in most cases, by the model developers). Indications are
that many of the models and techniques demonstrated during the workshop can be
utilized in 6.3 operational situations by operators other than the model developers.
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PART 1 PE WORKSHOP II

Editors' Note: These proceedings are divided into three parts. Part 1 gives the
historical details of the workshop, the thinking that went into the development of the
test cases, the seven test cases as presented to the participants, the agenda that the
workshop followed, and representative results for each of the test cases. It is,
therefore, the programmatic part of the proceedings with a summary of the results.

Part 2 gives the results presented for each test case. Part 2 stands alone as a
reference source for the underwater acoustics community. Each test case problem is
described in detail with an accompanying figure; the primary physical mechanism
that is to be modeled is presented with an accompanying rationale. Finally, each of
the results presented for that test case is plotted along with a reference solution (when
available); noteworthy comments on the results are then offered. Results shown in
Part 2 represent predictions from such a cross section of PE models-research
models and field operational models-as to render meaningless any attempts at
absolute comparisons. And, such comparisons would be contrary to the intent and
spirit of the workshop.

Part 3 of the proceedings contains the contributed papers from the workshop
participants. It is a most valuable part of the proceedings and should not be neglected
in lieu of the results that appear in Part 2. These papers are a valuable adjunct to the
results presented in Part 2. They contain the theoretical framework associated with a
particular PE model, in-depth discussions of results, and the particulars of how the
model was applied to a particular test case problem. In addition, the papers provide
the comprehensive list of references associated with a particular PE model. In several
cases, the papers represent the first results of a new PE model development-
application, e.g., the backscatter capability of the PE model.

INTRODUCTION

The history of the PE application to the underwater acoustics propagation problem
began when the approach was introduced to the acoustics community by Hardin and
Tappert (1973) at an AESD workshop on non-ray-tracing techniques (Spofford 1973).
Following the introduction of the method, a significant amount of work was done by
the underwater acoustics community to establish the limits of validity and utility of
the model.
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PE Workshop II: Part 1

In March 1981 a workshop (Davis et al. 1982) on the PE approach to underwater
acoustics propagation was held. The objectives of that workshop were threefold:

0 provide a forum for those active in theoretical and applied PE development to
exchange ideas, describe their PE computer programs, identify problems or
deficiencies in the PE approach, and stimulate new ideas and approaches;

0 compare computer results (solutions) for a common set of chosen underwater
acoustics problems; and

* provide guidance (via this new information) upon which the AEAS program office
could base decisions as to the development of a Navy-supported PE model that could
meet the needs of that program.

These objectives were met. Results from the PE workshop were used to define and
emphasize the areas in the PE approach where further research was needed. That
eventually led to a version of the PE model being selected by the U. S. Navy as a
standard range-dependent propagation model.

The first PE Workshop was organized into two parts: the first half of the workshop
was devoted to formal presentations on developments and improvements to the
PE approach; the second half of the workshop was devoted to the comparison of PE
model predictions against a set of four test cases.

Following the first workshop there was a virtual explosion of developments in the
field of PE modeling. Great strides were made in extending the areas of applicability
of the approach to different environments and conditions. A useful bibliography of
these advances in the PE method can be compiled from the references included in the
papers in Part 3 of these proceedings.

Because of the large body of work that has been done on the PE method in the past
decade it was decided to hold a second workshop. This second PE workshop (PE
Workshop II) was jointly sponsored by two divisions of the Office of Naval Research:
one responsible for basic research (designated by the U.S. Navy as 6. 1) and the other
responsible for applied research (designated by the U.S. Navy as 6.3). NRL was
invited to host the second workshop.

An organizing group was put together consisting of Stanley A. Chin-Bing and David
B. King of NRL; James A. Davis of Planning Systems, Incorporated; and Richard B.
Evans of Science Applications International Corporation. This group, in consultation
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PE Workshop II: Part 1

with the ONR sponsors, Ed Chaika and Marshall Orr, developed the philosophy of the
workshop: the workshop would be highly technical, interactive, and focused. To
accomplish this goal, workshop participation was limited to those 6.1 and 6.3
researchers who had actually developed underwater PE models and to those
6.3 researchers who were directly related in the model development and/or
improvement of Navy PE operational models.

A further restriction on workshop participation was made by the sponsors' choice of
the physical phenomena to be emphasized in this workshop, viz, underwater acoustic
propagation and backscatter. The related subject of underwater acoustic rough-surface
scattering, incorporated with PE methods, is large enough to warrant a workshop
devoted singly to that subject. With the expectation that such a workshop would soon
occur, the general topic of underwater acoustic scattering was minimized in this work-
shop.

The announcement of the workshop was made on 6 September 1990 to the acoustics
community at large. The announcement also solicited suggestions as to meaningful
test cases that might challenge the state-of-the-art PE models and their developers.
After reviewing all suggestions, a letter was sent on 18 January 1991, defining the six
test cases that would be studied during the workshop. (These test cases are detailed in
Appendix A.)

The use of test cases in a PE workshop environment conjures thoughts of competition
among the many different PE approaches. However, this was not to be the situation in
PE Workshop II. From the beginning it was planned to make the workshop as
meaningful to the underwater acoustics community as possible. In this spirit, the
workshop was designed to be noncompetitive, i.e., it would not be a "bake-off"
between PE models.

The objective was to obtain the best possible result from each model. Each participant
was encouraged to fine-tune their results as much as they desired. It was recognized
that no one model would be able to do all of the problems without a significant effort
on the part of the developer. With the noncompetitive spirit in mind, benchmark
results to several of the test problems were provided to each participant prior to the
workshop. Unfortunately, reference solutions were not generated for all of the test
cases. The available reference solutions were forwarded to the participants on 23
April 1991.

Since the workshop was meant to be noncompetitive, the model developers were
encouraged to go back after the workshop and "fine-tune" their results based on what they
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PE Workshop H: Part 1

learned during the workshop. Some of the modelers took advantage of this offer and were
able to generate better results after the workshop's conclusion. Other modelers chose not
to avail themselves of the opportunity for one reason or another. For example, the custodian
of the Navy Standard PE model felt that the model results without the advantage of "fine-
tuning" would be more representative of an operational model. Comparison of results at the
workshop did identify some deficiencies in the Navy Standard PE model (e.g., in the
starting field used by the model). These deficiencies were corrected in the later versions of
the model. Test case results from the later version of the Navy Standard PE model are
included in these proceedings, since these results now reflect the operational model's
capabilities.

The PE Workshop 1I was organized into two sections. The first section, covering the
first day and half of the second day, was devoted to formal presentations of papers.
The topics were varied. Participants had been invited to contribute a paper either on
some new development in PE modeling or on another innovative approach applicable
to underwater acoustic modeling. Authors had been especially encouraged to discuss
their models, both in theory and in application. However, they were free to present
any material that they felt was germane to the workshop objectives. This unstructured
format produced some valuable papers that went beyond the theory-application of a
particular model.

Some members of the modeling community were unable to attend due to other
commitments, but they still wished to have their work represented in the workshop. In some
cases they desired to have a formal paper included in the workshop proceedings; in other
cases they wanted the workshop proceedings to include the results of their model's
application to the test cases. In all respects, where appropriate, they were accommodated.
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I Workshop Agenda

Table 1-1 lists the 14 papers presented at the workshop in the order in which they
were given. Unrestricted discussion time was given at the conclusion of each paper so
that the chronology indicated in Table 1-1 represents the scheduled time, not the
actual time, that a paper was presented and/or concluded.

Manuscripts contributed by the presenters are included in Part 3 of this report. In
some cases the authors decided to combine two of their presentations into one paper.
In a few cases presentations were given for which the authors did not specifically
include that material in their manuscripts. However, all of their important results
are included in Part 2 and in their papers in Part 3.

The second part of the workshop was devoted to discussions of the test cases. Each
test case was introduced along with the rationale for its selection. If available, a
reference solution to the test case was presented which adhered to a specified plot
scale. (In the letter that defined the test cases [see Appendix A], a plot scale had been
specified for each test case. This information had been provided to each participant
prior to the beginning of the workshop.) Thus, anyone who had a solution to a test
case problem that they wished to present was asked to overlay their results on the
reference solution. (A similar format is followed in Part 2 of this proceedings where
each contributor's result is plotted over the reference solution.) This comparison
process produced very open discussions and allowed all results to be compared
against the reference solution and against one another.

"Reference solutions" were just what the terminology implies; i.e., they were
solutions to the test cases provided by the organizing committee and were used as a
common reference to compare with the various PE solutions. With the exception of
Test Case 1, where an analytic image solution to the Lloyd's Mirror problem was
used, all of the reference solutions were numerical solutions obtained from
underwater acoustic computer models whose accuracy had been established over
many years of peer reviewed applications. As an example, the COUPLE model (Evans
1983) has been accepted as "benchmark accurate" (Felsen 1990; Jensen and Ferla
1990) and it was used where applicable (e.g., Test Cases 2 and 4). Test Case 3
required an accurate solution that included range-dependent shear waves and the SAFE
model (Murphy and Chin-Bing 1991) was used to calculate the reference solution.
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PE Workshop H: Part 1

Table 1-1. PE Workshop II Agenda

MONDAY, MAY 6, 1991

1 -4 PM REGISTRATION (Holiday Inn, Slidell, LA) Presenters are in italics

TUESDAY, MAY 7,1991

8:30 AM WELCOME ADDRESSES E. D. Chaika, Jame Ia&&ew
9:00 AM History of PE Fred D. Tappert
9:30 AM Application of the IFD Model Ding Lee

10:00 AM FEPE and FEPES Benchmark Solutions Michael D. Collins
10:30 AM BREAK
11:00 AM A Finite-Difference/Split-Step Acoustic PE Code David J. Thomson
11:30 AM Finite-Difference Elastic-Acoustic PE Codes for Layered Media Gary H. Brooke

NOON LUNCH
1:00 PM PE II Workshop Contributions Finn Jensen, M. Porter, C. Ferla
1:30 PM FASTPE SLOWPE YOURPE MiPE: What are the Real Issues? Lan Nghiem-Phu
2:00 PM Navy Standard PE EleanorHorlmes, Laurie Gainey
2:30 PM BREAK
3:00 PM Windowed Transformation and Marching Algorithms for Local- B. Z Steinberg, J. J. McCoy

ized Phase-Space Representations
3:30 PM Handling Backscatter by a Marching Program Ding Lee, Don St. Mary
4:00 PM Full-Wave 3-D Modeling of Long-Range Oceanic Boundary Fred D. Tappert

Reverberation
5:00 PM ADJOURN
7:00 PM Dinner at Doug's Restaurant (Slidell, LA)

WEDNESDAY, MAY 8, 1991

8:30 AM Impedance Boundary Condition as Applied to PE John S. Papadakis
9:00 AM Post-PE Corrections David J. Thomson
9:30 AM BREAK

10:00 AM Test Case 1 - Comparison of Results, Discussions Full Audience Participation
11:00 AM Test Case 2 - Comparison of Results, Discussions Full Audience Participation

NOON LUNCH
1:30 PM Test Case 3 - Comparison of Results, Discussions Full Audience Participation
2:30 PM Test Case 4 - Comparison of Results, Discussions Full Audience Participation
3:30 PM Test Case 5 - Comparison of Results, Discussions Full Audience Participation
4:30 PM ADJOURN

THURSDAY, MAY 9, 1991

8:30 AM Test Case 6 - Comparison of Results, Discussions Full Audience Participation
9:30 AM Ray Methods in Underwater Acoustic Propagation-Scattering H. Weinberg

10:00 AM BREAK
10:30 AM Test Case 7 - Comparison of Results, Discussions Full Audience Participation
11:15 AM Discussions, Workshop Conclusion

NOON ADJOURN
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PE Workshop II: Part 1

For Test Case 6 the reference solution was experimental data (Fisher et al. 1989). In a
few cases, the participants provided their own test case reference solutions (e.g., the
SNAP model was used by Jensen to generate the reference solution for Test Case 7).
The reference solutions are given in tabular form in Appendix B.

When available, the reference solutions were provided to each workshop participant
prior to commencement of the workshop. Participants were encourage to use these
reference solutions as a guide in preparing their PE solutions.

It should be noted that not all of the models were applied to all of the test case
problems (see Tables 1-2 and 1-3 for details). This was expected since each test
case problem was designed to test a specific physical mechanism, which until
recently, was not included in many PE models. It is a credit to their developers that so
many of the PE models did so well on these test case problems.
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II Development of the Test Cases

Selection of the test cases was perhaps the most difficult problem faced in organizing
the PE Workshop II. The number of underwater acoustic publications involving PE-
model development is extensive for the decade of the Eighties as compared with the
previous decade. In general the capabilities of PE models have been significantly
extended. In the announcement letter the following topics were listed as possible
candidates for the test cases:

"* wide-angle propagation (a.k.a. high-angle propagation)

"* deterministic vs. stochastic propagation

"* conservation of energy in the PE model
"* full viscoelastic bottom (or equivalent) in the PE model

"* pulsed (broadband) propagation; time and arrival structure; Fourier synthesis of
frequency domain solutions vs. true time domain solutions

"* three-dimensional (3-D vs. N x 2-D) propagation

"* scattering (in-plane and out-of-plane) and backscatter

"* very low frequency propagation.

The announcement letter also solicited suggestions for meaningful test cases. The
responses were limited, but some very good ideas were offered. The problem then
became one of selecting a set of test cases that would cover as many meaningful types
of situations as possible. The criteria used in selecting the test cases were as follows:

"* Use only a small number of test cases.

"* Computer runtimes (and costs) should not be excessive.
"• Each test case should test just one type of physical mechanism.

"* The test case should involve a new development in PE modeling.

It became apparent that not all of the topics could be covered in a limited set of test
cases. Some things had to be eliminated. The first of many difficult decisions made
was to eliminate rough boundary scattering problems. It was felt that this would be
testing a rough surface scattering algorithm and not necessarily the PE approach. Also
it was felt that this topic was so broad in scope as to warrant a workshop in its own
right.

8 PE Workshop 1I
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Another area that was difficult to exclude was full 3-D PE underwater-acoustic
modeling. After many lengthy discussions and attempts, it was concluded that
the detailed description needed for a 3-D underwater acoustic problem-such that the
problem would be useful and unambiguous, and would provide a unique test for a
specific physical mechanism-was beyond the scope envisioned of this workshop.
Simply scattering out-of-plane (i.e., azimuthally off a bathymetric feature) would
certainly give a different result than that obtained by an N x 2-D modeling
approach-this had been documented in the literature. However, aside from
confirming the obvious, the real issue in this scenario would be how well the PE
method could handle scattering from an abrupt environmental feature; this would be a
duplication of the issue addressed in Test Case 4. Another environmental situation
where 3-D modeling had established a difference from the N x 2-D techniques was
the situation where azimuthal refraction occurs due to changes in the 3-D sound speed
field. This would have been a weak phenomenon (unless a front or eddy was
involved) and would have required far more early preparation from the workshop
organizers and participants than time would allow. (One can readily comprehend the
amount of information that would be needed for a 3-D problem by reviewing the data
required for the realistic 2-D problem of Test Case 6, shown in Tables A-1, A-2, and
A-3 of Appendix A.) Additionally, most of the physical phenomena that would be
tested (e.g., energy conservation, sharp refractions) were already included in the other
test case problems.

Six test cases were finally developed. This seemed to be the absolute minimum
number of cases that would cover the many topics of interest. While the number of
test cases seemed excessive (four test cases were used in the first PE workshop), it
was realized that only a few of the modelers would try to solve all of the test cases.
For example, several participants did not attempt to solve Test Case 3, which involved
propagation in elastic media, since their particular model did not include propagation-
conversion of shear waves.

Six test cases were distributed to interested parties on 18 January 1991. The test cases

selected were as follows:

"* Test Case 1: Lloyd's Mirror - Wide-Angle Propagation

"• Test Case 2: Conservation of Energy in Range-Dependent Propagation

"* Test Case 3: Range-Dependent Shear Wave Propagation

"• Test Case 4: Backscatter from a Waveguide Discontinuity

"* Test Case 5: Propagation in Constantly Changing Environment

"* Test Case 6: Underwater Acoustic Model Predictions vs. Measured Field Data

PE Workshop I1 9
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The major capabilities that would be tested by this set of test cases are the ability to
propagate wide-angle energy, the ability of the model to conserve energy as it goes up
and down a slope, the ability to account for shear propagation in elastic media, the
ability to handle backscatter from steep (vertical) surfaces, the ability to handle
constantly changing environments, and a comparison with measured field data. The
information sent to the participants regarding the six test cases is given in Appendix A.

During the course of the workshop discussions, a problem with wide-angle split-step
PE's experienced by Finn Jensen and Michael Porter was reexamined. The PE
Workshop II organizing committee had not included this problem as a test case
problem because the difficulty was peculiar only to some (not all) wide-angle split-
step PE models and was not a difficulty to other wide-angle PE models that used
finite-difference or finite-element solution techniques. However, in the course of the
workshop discussions it became evident that this was indeed an important problem to
be considered and, if possible, resolved. Consequently, we have included this problem
as:

0 Test Case 7: Long-Range Propagation in a Leaky Surface Duct.

The modelers who use a split-step PE solution were requested to further examine Test
Case 7 after the workshop had concluded. Relevant post-workshop results on
Test Case 7 could be incorporated into their contributed papers. Their responses are
included in some of the papers that appear in Part 3 of the workshop proceedings.

Several of the investigators used more than one model to solve the various test cases.
Twenty models were used by the modelers. This many models can lead to problems
and confusion in labeling different model results. In cases where possible, we
maintained the names used by the model developers. There were some cases where
liberty was taken and unique names assigned to the models. Sometimes virtually
the same model was used by different investigators; to help discriminate between the
same model being executed by different investigators, separate names were selected.

Table 1-2 gives an alphabetical listing of the labels used on the plots together with a
short discussion of the models. It is not intended to give a complete explanation of the
models since adequate information is contained in the literature. Along with each
label (model) is the name of the workshop participant who used the model to generate
results for the test cases.

Table 1-3 shows the models that were used by participants of the workshop versus the
test cases to which the models were applied.

10 PE Workshop 11
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Table 1-2. Models Used by Workshop Presenters

CU Steinberg and McCoy's windowed transformation and marching algorithms for
localized phase-space representations. Steinberg used it to obtain the solution
to Test Case 1.

COUPLE Richard Evans' coupled mode model; Evans used it to provide several of the
reference solutions used during the workshop. It was also used by Finn
Jensen (SACLANTCEN) to work Test Case 4.

DREP Finite-difference PE model developed and used by David Thomson (Defence
Research Establishment Pacific (DREP)) to generate solutions to workshop
Test Cases 2 through 7. In Test Cases 1 and 7 Thomson used his split-step
PE model.

DREPS The elastic PE model developed and used by Gary Brooke (DREP) to gener-
ate solutions to the workshop Test Case 3. It includes shear wave attenuation.

FEPE The finite-element PE model developed and used by Michael Collins of NRL to
generate solutions to the workshop test cases.

FEPES Collins' elastic version of his FEPE model that includes shear wave propaga-
tion and attenuation. Collins used it to provide solutions to Test Case 3.

FEPE ROT The ROT extension refers to a version of Collins' FEPE where he rotates the
coordinate system so that the water-sediment interface can be represented as
horizontally flat rather than a sloping bottom. He used this model as a check
for Test Case 3.

FEPES ROT Collins' rotated version of his shear PE (FEPES); he used it as a check for
Test Case 3.

IFDPE The implicit finite-difference PE model developed and used by Ding Lee to
generate solutions to the workshop Test Case 3.

IFDPE SAC IFDPE was also used by Jensen to work some of the cases. To distinguish his
results from those reported by Lee, a SAC extension was used.

IMPPE A version of IFDPE developed and used by John Papadakis. His version
replaces the standard "false bottom" method used in IFDPE with an
impedance bottom boundary condition.

LOGPE PE model developed by Berman, Wright, and Baer [Berman, et al. 1989]; it
uses a split-step solution technique. In a range-independent environment, its
"rays" are identical to the "rays" of the Helmholtz equation. Used by Jensen to
get results for Test Case 7.

MIPE Results generated by Lan Nghiem-Phu with the University of Miami's split-
step PE. This model has evolved from the original Hardin and Tappert model
developed circa 1972.

NAVY STD PE Results generated by Eleanor Holmes and Laurie Gainey using the U.S.
Navy's standard version of PE. This model uses the split-step algorithm.
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Table 1-2. Models Used by Workshop Presenters (Continued)

NON EC FE Collins' version of his FEPE model without the enhancement that "conserves"
energy.

OPT Results generated by Nils Paz using the split-step PE model in the OPTAMAS
system.

PAREQ SACLANTCEN version of PE that uses the split-step algorithm. The label
refers to the results generated by Jensen using this model.

REF REF refers to several different methods of getting a reference solution. For
Test Case 1 it is an analytic image solution to the Lloyd's Mirror problem. For
Test Cases 2 and 4 the COUPLE model was used. For Test Case 3 the SAFE
model was used. For Test Case 6 the reference solution is experimental data.

SNAP The SNAP (SACLANTCEN Normal Mode Acoustic Propagation) model was
used by Jensen to generate the Reference Solution for Case 7.

T-CPE This label refers to the Thomson-Chapman version of PE used by Jensen.

Table 1-3. Models Used Versus Test Cases

MODELS TEST CASES
USED 1 2A 2B 3A 3B 4A 4B 5A 5B 5C 6A 6B 6C 7

CU X

Ref.: COUPLE X X X X
DREP X X X X X X X X X X X X
DREPS X X X X X X X
FEPE X X X X X
FEPES X X
FEPE ROT X X
FEPES ROT X X
IFDPE X X X X X X X X X X iX X X
IFDPE SAC X X I X
IMPPE X X X X X X X X
LOGPE X
MIPE X X X X X X X X X X X X X X
NAVY STD PE X X X X X X X X X X X X X X
NON EC FE X X
OPT X X X X X X X X X X X
PAREQ X X
Ret.: SAFE X
Ref.: SNAP X
T-CPE X X

12 PE Workshop f1



III Results

This section of Part 1 presents an overview of the results from the PE Workshop II.
Part 2 of these proceedings is devoted entirely to the workshop results. The reader
should therefore consult Part 2 for details of results discussed in this section.

In presenting this overview, the PE models have been categorized into 3 classes. One
class represents the "6. Basic Research and Development (R&D)" PE models
together with the "6.2 Exploratory Development" PE models. Another class represents
the "6.3 Applications" PE models. The final class of PE models is composed of the 6.3
"in-the-field" operational PE models. (The general designations of "6.1," "6.2," and
"6.3" are used by the Office of Naval Research. While in principle quite distinct, in
practice, the same PE model could be used in 6.1, 6.2, and 6.3 research.) As indicated
earlier, the primary difference between a 6.3 Applications PE model and the 6.3 "in-
the-field" operational PE model is in the constraints imposed on the operational PE
model. These constraints are necessary trade-offs between accuracy vs. computational
speed vs. portability and compatibility. The OPTAMAS system and the U.S. Navy's
Standard PE model were the only bona fide 6.3 "in-the-field" operational PE models
used in this workshop. For classification purposes we have chosen some of the PE
models as representative of a 6.3 operational PE model. This is due to their similarity
with the Navy Standard PE model in their split-step solution techniques. Historical
information on the development of the PE method and its evolution into the Navy
Standard PE model is given in Appendix C.

This overview of the results adheres to the following format:

"* For each of the Test Cases, 1 through 6, 3 representative plots from the PE models'
predictions are given.

"* These 3 representative plots are from the 3 classes of PE models that were used to
obtain solutions to the workshop's test cases; one of the 3 representative plots
comes from each of the 3 classes.

"* The first set of plots (labeled Fig. l-x(a), where x=l,2,...,6) is representative of the
R&D PE models' results for Test Case x.

"* The second set of plots, Fig. l-x(b), is representative of the Applications PE
models' results for Test Case x.

"* The third set of plots, Fig. I-x(c), is the result from the U.S. Navy's Standard PE
model for Test Case x.
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For this overview, Test Case 7 is treated differently than the previous six test cases.
Three of the operational PE model's results are shown for this case with different
combinations of reference sound speeds and narrow-angle vs. wide-angle propagation
options. These three plots in Fig. 1-7 serve to indicate the problems encountered in
Test Case 7.

Finally, for this overview, the selection of representative results for each Test Case, 1
through 6, was made on the basis of the best visual agreement with the reference
solution. Thus, with the exception of the Navy Standard PE model, no one model's
results appear in all of the test cases.
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TEST CASE 1 - Lloyd's Mirror - Wide-Angle Propagation

Results shown in Fig. 1-1(a) from the representative R&D PE model indicate that the
research-level PE models are able to propagate the acoustic wave at a half-beamwidth
approaching 900. This is an important result since it implies that some PE models are
capable of propagating nearly all of the forward propagating acoustic field. In the first
PE Workshop (in 1981) the maximum half-beamwidth that could be propagated by the
PE models was 400. Results shown in Fig. 1-1(b) are from a representative
operational PE model. The results match the analytic solution to the Lloyd's Mirror

40 ............. Ref.: Lloyd's Mirror 40- Ref.: Uoyd's Mirror

R&D PE model ' Operational PE

0 0
_j

00

0 2 4 6 8 10 0 2 4 6 8 10
RANGE (km) RANGE (km)

(a) (b)

0Ref.: Lloyd's Mirror problem at every point except at the range
4- very near the source. In this particular case,

New NAVY STD PE the operational PE model was able to
ca so- propagate a half-beamwidth in excess of

850.
_j Results from the Navy's Standard PE

0 - model are shown in Fig. 1-1(c) for Test
U) Case 1. It represents an improvement in the
"2 loo- imodel as a result of deficiencies identified
Z "during the workshop. The improvement

was incorporated into the next operational
- 120-- .1 1 1' '1 ' version of the model. It indicates that even

0 2 4 6 8 10 under the constraints of using field-
RANGE(ki) operational parameters in the grid size (Az,

Fig. 1-1. Test Case ) results from three Ar) this model is capable of propagating the
classes of PE models, acoustic field that is included in a half-

beamwidth of greater than 750.
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TEST CASE 2 - Conservation of Energy in Range-Dependent Propagation

This test case required the PE models to propagate the acoustic field upslope in an
environment similar to the ASA penetrable lossy wedge benchmark problem.
However, this wedge does not intersect the air-water surface. Rather it slopes
downward after reaching a height of 25 m from the surface. The physical situation is
such that the PE model must propagate three modes upslope, traverse a region at the
apex of this upslope-downslope wedge where no modes are propagating, and then
propagate downslope where the three modes that were stripped-out going upslope are

Ref.: COUPLE 40 Ref.: COUPLE

SR&D PE m odel V_ Operational PEOe)50 - -\ Op raio a PE•' ' u 0 •

so-
. 0-60 ",

0 070 - U 70-
U)

S80 80-
< z

I-I- 90- ,r~y~~,~y
0 1 2RA3G 4 5 6 7 0 1 2RA3G 4 5 6 7

RANGE (km) RANGE (km)
(a) (b)

now reestablished going downslope.
40 Ref.. COUPLE The ability of the PE models to conserve

NAVY STD PE energy is being tested in this problem.
o• 5 0  

-.- - Since the PE marching algorithm can
. -satisfy only one of the two necessary

. __S- __ _ continuity conditions, it is now known

z that the model has difficulty in such
70- --_,_ situations. The results in Fig. 1-2 attest

to the fact that the PE modeling
CoBO- -. community has found ways to overcome
z this difficulty. The Navy Standard PE

model shows inaccuracies in theC 1 2 3 4 56.. downslope region (3.5 km to 7 km).
0 1 2R3 4 5 6 7 These are likely due to the cumulative

RANGE (km) effects of prediction errors that began in
(c) the upslope region.

Fig. 1-2. Test Case 2 results from three
classes of PE models.
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TEST CASE 3 - Range-Dependent Shear Wave Propagation

This test case is just the ASA penetrable lossy wedge benchmark problem with shear
wave speed and shear wave attenuation added. Until recently the PE models could
only account for shear wave conversion in the ocean bottom by including an
"equivalent" attenuation factor. The PE Workshop II was fortunate to have the results
from two recently developed shear PE models. These two PE models accurately
include range-dependent shear wave conversion as can be seen in Fig. 1-3(a). (The

S.............. Ref.: SAFE .............. Ref.: SAFE /

-R&D PE model Operational PE

Sso __o_50-6

0 0z70-- z 70 -

Co cnE so - T.. . . s• o -. . . . . . . ,
c 0 1 2 3 4 cc 0 1 2 3 4

RANGE (km) RANGE (km)
(a) (b)

.Ref.: SAFE reference solution was obtained from a
40-:S seismoacoustic finite-element model

""NAVY STD PE (SAFE) and can be considered accurate
throughout its predictive range of 0 km to
2.2 km). The operational PE model, which

C4 60_, does not contain shear waves, gave a
o0 V creditable result, given that it relied on an

z70- I "equivalent" attenuation to try and account
0 for the losses due to shear conversion. The
=U) ___0_ 1Navy Standard PE model also used an

"equivalent" attenuation but it did not
2 9- -- .....-.... compare as well, as can be seen in
S0 1 2 3 4 Fig. 1-3(c).

RANGE (km)
(c)

Fig. 1-3. Test Case 3 results from three
classes of PE models.
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TEST CASE 4 - Backscatter from a Waveguide Discontinuity

This test case required the calculation of backscatter from a step discontinuity in an
otherwise flat waveguide floor. The discontinuity begins at range=3 km as is evident
from a close scrutiny of the three plots in Fig. 1-4. The "high-frequency" oscillations
in the reference curve, between 0 km and 3 km are due to the backscattered field from
the step interfering with the forward-propagating field in this 25-Hz continuous wave
(cw) example. The reference solution came from the 3-D axinily symmetric coupled
mode model (COUPLE). The backscattered field (Fig. 1-4(a)) is relatively weak
compared to the incident field. For the PE models to calculate the backscattered field

............ Ref.: COUPLE

30 R&D PE (total field) 30 .............. Ref.: COUPLE

rn• -- R&D PE (backscat.)i- Operational PE

CO) Ucai

Cl 90 ,A... ... _ 50 , ..
0 0 VV

7- 2-

10 . r 01 2 3 4

RANGE (kin) RANGE (kin)
(a) (b)

at the source region, the acoustic field was
.............. Ref.: COUPLE propagated forward to the discontinuity,

S30 the reflected field obtained via a local
NAVY STD PE backscatter calculation, and this reflected

(A ifield back-propagated by the PE model;
0 50- the total field is obtained by a coherent

z V Vý sum of the two PE fields. (Refer to Part 2
of the proceedings for a discussion of how

70- this PE field relates to the total field from
I , a 2-D axially symmetric coupled mode

- model.) Both the R&D and operational PE
cc 901 models came very close to matching the

0 1 2 3 reference solution. PE models do not yet

RANGE (km) offer the option to calculate backscatter.
(C) However, in the hands of an expert

modeler, the PE models can be used to
Fig. 1-4. Test Case 4 results from three accurately predict backscatter.

classes of PE models.
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TEST CASE 5 - Propagation in Constantly Changing Environment

This test case involved propagation over a flat ocean bottom that slopes downward
(starting at range--0.5 km) and becomes flat again (at range=2.5 km). In the sloping
region the rate of variation is different between the continuously changing sound
speeds in the water and the corresponding continuously changing bathymetry and
sediment depth. The problem is straightforward and requires implementation of a
large amount of data to make an accurate prediction. The results shown in Fig. 1-5

20-- R&D PE 20- I -Operational PE

04

M 60

00

Z so- Z 0-1

So100- D100

Z Z

0 2 4 6 8 10 - 0 2 4 6 8 10
RANGE (kin) RANGE (km)

(a) (b)
20_ Nattest to this difficulty. Since no reference

_0_ AV STD__ PE_ calculation was made at the time of this
report, the only meaningful comparions are
between the three plots. The R&D PE

0 model and the operational PE model had
extensive data updates and used a very fine

_____ grid over which to make calculations. Their
as- - results appear quite similar. The Navy

Standard PE model was constrained to use
S100- the field-operational parameters (e.g.,1limite aa siz and the e could ntwlimited array sizes) and therefore could not

S120- ....T i I ~~ I -1- use as fine a grid in depth as the other two
0 2 4 6 8 10 models.

RANGE (km)
(M)

Fig. 1-5. Test Case 5 results from three
classes of PE models.
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TEST CASE 6 - Underwater Acoustic Model Predictions vs. Measured Field Data

This case tested the ability of the various PE models to match acoustic data taken in a
region where the environmental and geoacoustic parameters are believed to be
well-known. The data track starts in shallow water (200 m) and traverses 100 km to
deep water (-4 km). The ocean bottom along the track is sediment overlying a rough
shear-supporting subbottom. None of the model predictions agreed with the data but
were so consistent in their predictions that the PE Workshop II participants concluded

60- 60-

SRef.: Corrected Data Ref.: Corrected Data
i--- R&D PE model V O, perational PE model

0 so- 080
z~ A 9

20 40 60 80 0 20 40 60 80
RANGE (kin) RANGE (kin)(a) (b) ! .

60-, I" Ref.:Corrected.Data that either the acoustical or environ-

m" -;-!i• i1""NAVY STD PE 1 mental data was in error.eAreprocesSingmdeswe

U)•: orc ndta h rcseaot a ... of the data showed that the moelr were-

0 60- ***',•; " _ __ erorTi correct adta h rcsed data wa shw in
S• 1-6 along with representative predic-

• e !• tions from the workshop participants. All
100- !:••/• three classes of PE models (the basic

R&D PE model, the Applications PE

S~model, and the operational model-the

120--~---~- -~-~-- -,,-~- ~Navy's Standard PE model) did very well0 20 40 60 80 in the comparisons.

RANGE (km)
(c)

Fig. 1-6. Test Case 6 results from three
classes of PE models.
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TEST CASE 7 - Long-Range Propagation in a Leaky Surface Duct

This test case illustrates that PE models using the split-step solution method together
with the Thomson-Chapman (T-C) wide-angle propagation option can give very
erroneous results over long ranges when a poor choice of the reference sound speed
(Co) is used. This occurs when a surface duct plus deep upward refracting sound
speed profile is present. In Fig. 1-7(a) the operational PE model is using the T-C
wide-angle propagation option with CO = 1482 m/s and shows perfect agreement with
the reference solution (SNAP SAC).

60- .... . SNAP SAC60 ............. SNAP SAC

_ Operational PE Model; Operational PE; standard
T-C option, Co=1 482 m/s narrow angle, Co=1500 mn/s

a 80, so-
00

0 _oj z

0 0 lo0 '00 0AI

Operational PE not run past 100 kmr Operational PE not run past 100 km
mz 4 120o-,. . . .
< 120- W
cc 0 50 100 150- 0 50 100 150

RANGE (kin) RANGE (kin)
(a) (b)

In Fig. 1-7(b) the operational PE model is
60- Operational PE Model; using the narrow-angle ("std PE") propa-

T-C option, C,=1500 rn/s gation option with CO = 1500 m/s and
again shows perfect agreement with the

S_ so reference solution.
-J I , In Fig. 1-7(c) the operational PE model is
.z using the T-C wide-angle propagation

option with CO = 1500 m/s and now shows
0 a 10-dB disagreement with the reference

"Operational PE not run past 100 km solution.
z 120- I I This problem is associated with a poor

-0 0 io0 150 choice of CO and only occurs in some PE
RANGE (km) models using T-C wide-angle options;

(c) thus finite-difference and finite-element PE
Fig. 1-7. Test Case 7 results from three models are unaffected.

classes of PE models.
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IV Summary and Conclusions

The PE Workshop II provided an avenue to demonstrate the many advances that have
occurred in the development of underwater acoustic PE models since the first PE
workshop was held in 1981. Both basic research PE models and application-
operational PE models were able to account for very wide-angle acoustic propagation;
energy conservation in range-dependent propagation; propagation over and through
range-dependent, shear-supporting bottoms, including shear attenuations; backscatter
from a sharp discontinuity; and propagation in a constantly changing environment. The
implications to the underwater acoustic community are that present PE models can be
used to accurately simulate underwater acoustic fields in a highly complex ocean
environment (e.g., highly range-dependent propagation over shear-supporting ocean
bottoms, including backscatter).

The PE models presented at the workshop were exercised by experts in acoustic
modeling (in most cases, by the developers of the models). Indications are that many
of the models and techniques demonstrated during the workshop can be utilized in 6.3
operational situations by operators other than the model developers.

Perhaps the most important and encouraging result of this workshop is that
underwater-acoustic PE models from both the 6.1 basic research modeling community
and the 6.3 Navy operational modeling community were applied to the same set of test
problems. Each test problem was designed to push the PE models to their limits, and
each of the two communities' PE models did extremely well, given the requirements
and constraints imposed by each community. The PE models developed by the 6.1
basic research modeling community were able to produce results for the test case
problems that were, in most cases, benchmark accurate. This is a definite requirement,
since the basic research community uses these models, often in highly complex
underwater environments, to identify, isolate, and understand the physical
mechanisms involved in underwater acoustic propagation and scattering. The 6.3
Navy operational community is also interested in accurate model predictions, but the
need for computational speed, portability, and the ability to run in the field on a
field-type computer (micro or desk-top computer) is also of utmost importance; this
requires that trade-offs among accuracy, speed, and portability be optimized. The test
cases in the PE Workshop II did not address speed and portability, only accuracy. The
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workshop results indicate that some of the operational PE models can be very
accurate when not constrained by operational parameters.

A final point of interest from the PE Workshop H: The experimental data set in Test
Case 6 constituted one of the more comprehensive acoustic and environmental-
geophysical data sets available. When the PE modelers failed to match this data, they
questioned not their models' results but rather the data. They were unanimous in their
confidence of their models' predictions. This led to a reprocessing of this already
twice-processed data, and the subsequent discovery of an error in the processing
parameters. The PE models' predictions now compare better with the corrected
acoustic data.

In the decade separating the two PE workshops, the underwater acoustic PE models
have evolved from a beginning where no two PE models gave the same answer to the
point where a poor match between data and model prediction suggests a flaw in the
environmental or acoustic data.
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Appendix A - Test Cases: Descriptions and
Plotting Formats

Appendix A contains the description of each test case problem. Information on Test
Cases 1 through 6 (in the form presented below) was sent to the participants several
months prior to commencement of the workshop. Included in the descriptions were
the sizes of the viewgraph transparencies on which the results of each test case was to
be plotted. Test Case 7 was introduced to the participants at the workshop and post-
workshop responses solicited for inclusion in the proceedings.

TEST CASES FOR PE WORKSHOP II

TEST CASE 1

The selection of a starting field can play an important role in the results produced by a
PE model. In addition to testing the starting field the geometry of this problem will
also test the high angle capability of a model.

The environment is a Lloyd's mirror problem. The fluid is a halfspace with a pressure
release surface and a constant sound speed of 1500 m/s. The density is 1.0 g/cm 3 with
no attenuation. The fixed point depth (source depth) is 350 m with a moving point
depth (receiver depth) of 3990 m. The frequency is 40 Hz.

The results from this test case should be in transmission loss (TL) re 1 m versus range
in kilometers. The horizontal axis of the plot should be the range, from 0 km to 10 kin,
with divisions of 1 km/0.9 in. The vertical axis should display the TL (in dB re 1 m)
and should be from 30 dB to 100 dB with divisions of 10 dB/0.75 in.

TEST CASE 2

This test case is an upslope-downslope problem that is an extension to the Acoustical
Society of America (ASA) benchmark problem. This case is designed to test how well
the models conserve energy in a strongly rangedependent environment. The following
figure defines the geometry and physical parameters of the problem.
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4
25 m

200mr

i • , 3 .5 k m "
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Environmental parameters for Test Case 2.

In the water the sound speed is 1500 m/s, the density is 1 g/cm3, and there is no
attenuation. In the fluid bottom the sound speed is 1700 m/s, the density is 1.5 g/cm 3,
and there is an attenuation of 0.5 dB/A,. The frequency is 25 Hz, the fixed point depth
(source depth) is 100 m, and the moving point depths (receiver depths) are 20 m and
150 m.

The results for the two different receivers should be presented on separate plots. The
range scale should be from 0 to 7 km at 1 km/in, with the transmission loss from 30 to
100 dB with divisions of 10 dB every 0.75 in.

TEST CASE 3

Recently there has been strong interestt in extending the capability of underwater
acoustic models to include more realistic treatments of the ocean bottom-subbottom,
including anelastic media. This case is an adaptation of the ASA Benchmark problem
to include an anelastic bottom.

1"Special Research Program Bottomn/Subbottom Reverberation Science Plan" edited

by J. A. Orcutt, Scripps Institution of Oceanography, 1989, for the Office of Naval
Research.
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Environmental parameters for Test Case 3.

In the water the sound speed is 1500 mn/s, the density is 1 g/cm 3, and there is no
attenuation. In the anelastic bottom the compressional speed is 1700 m/s, the shear
speed is 800 m/s, the density is 1.5 g/cm3, both the compressional and shear
attenuations are 0.5 dB/X. The frequency is 25 Hz, the fixed point depth (source
depth) is 100 m, and the moving point depths (receiver depths) are 30 m and 150 m.

The results for the two different receivers should be presented on separate plots. The
plots for this case should be from 0 km to 4 km at 1 km/1.5 inch for the range
(horizontal) axis, and from 30 dB to 100 dB with a scale of 10 dB/0.75 in. for the
transmission loss (vertical) axis.

TEST CASE 4

This test case is presented to test the ability of different models to handle the problem
of backscattered energy.

In the water the sound speed is 1500 m/s, the density is 1 g/cm3 , and there is no
attenuation. In the fluid bottom the sound speed is 1700 m/s, the density is 1.5 g/cm3,
and there is an attenuation of 0.5 dB/X. The frequency is 25 Hz, the fixed point depth
(source depth) is 100 m, and the moving point depths (receiver depths) are 95 m and
150 m.

The results for the two different receivers should be presented on separate plots. The
range (horizontal) scale should be from 0 to 5 km at 1 km/in, with the transmission
loss (vertical) scale from 30 to 100 dB with divisions of 10 dB every 0.75 in.
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Environmental parameters for Test Case 4.

TEST CASE 5

This case is designed to test the ability of underwater acoustic propagation codes to
handle range variations in the sound speeds in a range-dependent situation.

The bathymetry of this test case has a flat bottom of 200 m depth out to a range of
0.5 km. At that range a downslope section is encountered that drops off 200 m over
the next 2,000 m. The bottom then remains flat at 400 m out to the final range of
10,000 m.

The sound speed structure in the water is not a function of depth but does have a
dependence on the range. It is a constant 1500 m/s out to a range of 0.5 km. Over the
downslope portion of the bathymetry the sound speed varies linearly in range from
1500 m/s to 1540 m/s. At a range of 2.5 km the sound speed remains a constant
1540 m/s out to a range of 10.0 km. The density of the water is I g/cm 3 and there is no
attenuation.

The fluid bottom consists of two layers: the first bottom layer (i.e., the sediment) is a
constant 200 m thick and follows the contour of the water/sediment interface; the
second bottom layer (i.e., the bottom) is a homogeneous layer of infinite depth. The
pertinent physical parameters of these two bottom layers are as follows:

* The sediment sound speed is 1700 m/s, the density is 1.5 g/cm3 , and the
attenuation is 0.5 dB/X.

* The bottom sound speed is 1900 m/s, the density is 3.0 g/cm3 , and the
attenuation is 0.1 dBl.
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The frequency is 25 Hz, the fixed point depth (source depth) is 100 m, and the moving
point depths (receiver depths) are 30 m, 150 m and 250 m.

The results for the three different receivers should be presented on separate plots.
These plots should be transmission loss, in dB, versus range, in kilometers. The
horizontal axis of the plot should be the range, from 0 km to 10 kin, with divisions of
1 km/0.9 in. The vertical axis should display the transmission loss (in dB re 1 m) and
should be from 60 dB to 130 dB with divisions of 10 dB/0.75 in.

0 m Sound Sound speed varies linearly
speed = in range from 1500 m/~s to Sound speed

200 m 150 m/s 1540 m/s 1540 m/sE, WATER

t- 400 m
a.

I I

BOTTOM I
I g I

0.0 0.5 2.5 10.0
RANGE (kin)

Environmental parameters for Test Case 5.

TEST CASE 6

This test case will test the different models against measured field data. The necessary
environmental information is provided in the tables below. There were three sound
speed profiles measured along the track. The bathymetry is also supplied with the
range in kilometers and the depth in meters. A series of range-dependent geoacoustic
descriptions are also supplied, where the depths are measured relative to the air /water
interface.

The three sound speed profiles are presented in the following tables. Each table is
preceded by the initial range of the profile.

The problem parameters to be used are as follows:
Frequency = 15 Hz
Fixed Point (Sources) Depths = 88 m, 112 m, and 148 m
Moving Point (Receiver) Depth = 30 m
Maximum Range of Calculation = 100 km
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The plots (one for each source depth) should have a range (horizontal) scale of 0.0 km
to 100 km with each 10 km division equal to 0.75 inch. The transmission loss
(vertical) axis is in dB re 1 m and should be from 30 dB to 100 dB with divisions of
10 dB/0.75 in.

Editors' Note: The experimental acoustic data that accompanied Test Case 6, and
which represents the "reference solution "for this case, was taken by Hassan B. Ali of
NRL (Fisher et al. 1989). The geoacoustic ocean-bottom data, compiled by Peter
Fleischer of NRL, represented data taken along a seismic line parallel to and within
30 miles of the track over which the acoustic data was taken. The geoacoustic ocean-
bottom data compilation was part of the Office of Naval Research's Acoustic
Reverberation Special Research Program.

Table A-1. Sound Speed Profiles for Test Case 6
Profile I at Range = 0.00 km

Depth Sound Depth Sound Depth Sound Depth Sound

(in) Speed (mis) (m) Speed (m/s) (M) Speed (m/s) (M) Speed (m/s)

0. 1506.022 5. 1506.318 10. 1506.614 15. 1502.202
20. 1495.611 25. 1493.545 30. 1491.493 35. 1490.315
40. 1488.301 45. 1487.187 50. 1486.485 55. 1485.437
60. 1485.289 65. 1484.630 70. 1484.677 75. 1483.561
80. 1482.737 85. 1482.261 90. 1481.918 95. 1481.712

100. 1481.555 105. 1481.822 110. 1481.956 115. 1482.079
120. 1482.196 125. 1482.738 130. 1482.723 135. 1482.596

140. 1482.271 145. 1482.296 150. 1481.903 155. 1481.578
160. 1481.571 165. 1481.573 170. 1481.404 175. 1481.367
180. 1481.091 185. 1480.967 190. 1480.912 195. 1480.862

200. 1480.851 205. 1480.923 210. 1480.974 215. 1481.014
220. 1481.063 225. 1481.118 230. 1481.090 235. 1481.124
240. 1481.064 245. 1481.064 250. 1481.042 255. 1481.075
260. 1481.188 265. 1481.215 270. 1481.131 275. 1481.071
280. 1480.886 285. 1480.840 290. 1480.478 295. 1480.914
300. 1480.811 305. 1480.745 310. 1480.683 315. 1480.654
320. 1480.483 325. 1480.337 330. 1480.204 335. 1480.080
340. 1480.012 345. 1479.881 350. 1479.812 355. 1479.806
360. 1479.804 365. 1479.783 370. 1479.726 375. 1479.754
380. 1479.890 385. 1479.786 390. 1479.621 395. 1479.703

400. 1479.717 405. 1479.766 410. 1479.713 415. 1479.651
515. 1479.000 527. 1479.000 1
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Table A-1. Sound Speed Profiles for Test Case 6 (Continued)

Profile 2 at Range = 29.415 km

Depth Sound Depth Sound Depth Sound Depth Sound

(m) Speed (m/s) (M) Speed (m/s) (m) Speed (m/s) (M) Speed (m/s)
0. 1507.331 5. 1505.019 10. 1502.707 15. 1497.749

20. 1491.660 25. 1488.583 30. 1487.419 35. 1486.231
40. 1485.515 45. 1484.530 50. 1484.153 55. 1484.028
60. 1483.993 65. 1483.809 70. 1483.281 75. 1483.323
80. 1483.123 85. 1482.863 90. 1482.666 95. 1481.924

100. 1481.940 105. 1481.676 110. 1481.778 115. 1482.423
120. 1481.923 125. 1481.753 130. 1481.872 135. 1481.720
140. 1481.677 145. 1481.454 150. 1481.455 155. 1481.426
160. 1481.346 165. 1481.384 170. 1481.290 175. 1481.107
180. 1480.995 185. 1481.022 190. 1480.790 195. 1480.683
200. 1480.632 205. 1480.499 210. 1480.246 215. 1480.133
220. 1480.173 225. 1480.099 230. 1479.915 235. 1479.718
240. 1479.636 245. 1479.585 250. 1479.563 255. 1479.451
260. 1479.365 265. 1478.913 270. 1478.887 275. 1478.780
280. 1478.593 285. 1478.450 290. 1478.477 295. 1478.355
300. 1478.048 305. 1478.023 310. 1478.023 315. 1477.665
320. 1477.547 325. 1477.416 330. 1477.201 335. 1477.134
340. 1476.939 345. 1476.870 350. 1476.903 355. 1476.923
360. 1476.809 365. 1476.786 370. 1476.694 375. 1476.464
380. 1476.346 385. 1476.589 390. 1476.478 395. 1476.814
400. 1477.269 405. 1477.631 410. 1477.666 415. 1477.739
420. 1477.779 425. 1477.809 430. 1477.744 435. 1477.790
440. 1477.828 445. 1477.851 450. 1477.771 455. 1477.813
460. 1477.839 465. 1477.843 470. 1477.837 475. 1477.693
480. 1477.641 485. 1477.680 490. 1477.687 495. 1477.659
500. 1477.683 525. 1476.900 550. 1476.616 575. 1477.078
600. 1477.372 625. 1477.739 650. 1477.995 675. 1478.129
700. 1478.327 750. 1478.841 775. 1479.017 800. 1479.328
825. 1479.552 850. 1479.736 875. 1479.902 900. 1480.127
925. 1480.333 950. 1480.330 975. 1480.592 1000. 1480.602

1100. 1481.446 1200. 1482.158 1300. 1482.986 1400. 1483.890
1500. 1,o84.961 1600. 1485.871 1959. 1486.506
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Table A-1. Sound Speed Profiles for Test Case 6 (Continued)
Profile 3 at Range = 76.556 km

Depth Sound Depth Sound Depth Sound Sound
(m) Speed (rnis) (M,) Speed (nms) (in) Speed (mns) (in) Speed (rns)

0. 1517.191 10. 1505.064 20. 1492.937 30. 1487.920
40. 1485.705 50. 1484.379 60. 1484.078 70. 1483.978
80. 1482.976 90. 1482.394 100. 1481.174 110. 1481.592

120. 1481.793 130. 1481.465 140. 1481.488 150. 1481.396
160. 1481.339 170. 1481.122 180. 1480.959 190. 1480.892
200. 1480.388 210. 1480.202 220. 1479.921 230. 1479.736
240. 1479.643 250. 1479.190 260. 1478.809 270. 1478.561
300. 1477.954 310. 1477.495 320. 1477.879 330. 1477.643
340. 1477.692 350. 1477.434 360. 1477.513 370. 1477.139
380. 1477.470 390. 1477.310 400. 1477.193 410. 1478.001
420. 1477.839 430. 1477.635 440. 1476.783 450. 1476.917
460. 1477.609 470. 1477.031 480. 1477.130 490. 1477.737
500. 1477.886 530. 1477.826 560. 1477.860 590. 1477.819
620. 1478.050 650. 1478.143 680. 1478.475 710. 1478.815
740. 1479.079 770. 1478.416 800. 1478.189 830. 1478.973
860. 1479.113 890. 1479.471 920. 1479.884 950. 1480.106
980. 1480.345 1010. 1480.521 1110. 1481.193 1210. 1482.064

1310. 1482.846 1410. 1483.751 1510. 1484.792 1610. 1485.926
1710. 1487.038 1810. 1488.003 1910. 1489.202 2010. 1490.499
2110. 1491.874 2210. 1493.421 2310. 1494.983 2410. 1496.574
2510. 1498.246 2640. 1499.929

Table A-2. Bathymetry for Test Case 6

Range (m) Depth (m) Range (m) Depth (m) Range (m) Depth (m)

0.00 201.00 3362.00 385.00 10040.00 407.00
15284.00 422.00 18323.00 428.00 20266.00 411.00

23884.00 381.00 25464.00 527.00 29415.00 559.00
30353.00 560.00 35064.00 601.00 40875.00 674.00

42268.00 750.00 46837.00 751.00 50810.00 1038.00
52029.00 979.00 59874.00 1586.00 65524.00 1614.00

69824.00 1713.00 72362.00 1650.00 73968.00 1959.00
74461.00 1892.00 76656.00 1975.00 78364.00 1905.00
79855.00 1702.00 82052.00 1879.00 83148.00 2136.00

85040.00 2627.00 86883.00 2640.00 91132.00 2637.00
93360.00 2490.00 95744.00 2649.00
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Table A-3. Geoscoustic Properties for Test Case 6

Depth is measured from the air/water interface. The speed and attenuation are given for
the compression wave. The range value (in kilometers) along the track precedes the
geoacoustic description.

Range = 0.0 km

Depth (m) Speed (m/s) Density (g/cm3) Alten (dB/.)

201.00 1500.0 2.19 0.12
1757.43 2100.0 2.19 0.27
1760.00 2600.0 2.54 0.10
3700.00 3400.0 2.54 0.09
3708.96 4600.0 2.60 0.06
8000.00 4600.0 2.60 0.06

Range : 3.362 km

Depth (m) Speed (m/s) Density (g/cm 3) Atten (dB/X)

385.00 1500.0 2.19 0.12
1811.95 2100.0 2.19 0.27
1815.00 2600.0 2.54 0.10
3580.00 3400.0 2.54 0.09
3584.87 4600.0 2.60 0.06
8000.00 4600.0 2.60 0.06

Range = 10.040 km

Depth (m) Speed (m/s) Density (glcm3) Atten (dBfl)

407.00 1500.0 2.19 0.12
1867.76 2100.0 2.19 0.27
1870.00 2600.0 2.54 0.10
3325.00 3400.0 2.54 0.09
3331.37 4600.0 2.60 0.06
8000.00 4600.0 2.60 0.06

Range 15.284 km

Depth (m) Speed (m/s) Density (9/cm3) Atten (dB/)

422.00 1500.0 2.19 0.12
1736.61 2100.0 2.19 0.27
1740.00 2600.0 2.54 0.10
3179.31 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09
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Table A-3. Geoacoustic Properties for Test Case 6 (Continued)

Range a 18.323 km

Depth (m) Speed (n/s) Density (gtcm3) Aften (daM.)

428.00 1500.0 2.19 0.12
1527.55 2100.0 2.19 0.27
1530.00 2600.0 2.54 0.10
3111.79 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 20.266 km

Depth (m) Speed (mis) Density (g/cm3) Atten (dB/X)
411.00 1500.0 2.19 0.12

1361.15 2100.0 2.19 0.27
1365.00 2600.0 2.54 0.10
3074.75 :A00.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 23.664 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB/M)
381.00 1500.0 2.19 0.12
671.12 2100.0 2.19 0.27
675.00 2600.0 2.54 0.10

3021.91 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 26.464 km

Depth (m) Speed (mis) Density (g/cm 3) Atten (dB/X)
527.00 1500.0 2.19 0.12

1334.89 2100.0 2.19 0.27
1340.00 2600.0 2.54 0.10
3005.12 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09
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Table A-3. Geoacoustic Properties for Test Case 6 (Continued)

Range. 29.415 km

Depth (m) Speed (m/s) Density (g/cm&) Aften (dBrl)
559.00 1500.0 2.19 0.12

1439.22 2100.0 2.19 0.27
1445.00 2600.0 2.54 0.10
2979.31 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range z 30.353 km

Depth (m) Speed (m/s) Density (g/cm") Atten (dB/X)
560.00 1500.0 2.19 0.12

1276.24 2100.0 2.19 0.27
1280.00 2600.0 2.54 0.10
2976.78 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range : 35.064 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB/X)

601.00 1500.0 2.19 0.12
994.46 2100.0 2.19 0.27

1000.00 2600.0 2.54 0.10
2984.40 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 40.875 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB/)
674.00 1500.0 2.19 0.12

1002.59 2100.0 2.19 0.27
1005.00 2600.0 2.54 0.10
3039.20 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

PE Workshop 11 35



PE Workshop II: Part 1 - Appendix A

Table A-3. Geoacoustic Properties for Test Case 6 (Continued)

Range - 42.268 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dBrX)
750.00 1500.0 2.19 0.12

1454.61 2100.0 2.19 0.27
1460.00 2600.0 2.54 0.10
3061.66 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 46.837 km
Depth (m) Speed (m/s) Density (g9cm 3) Atten (dBA)

751.00 1500.0 2.19 0.12
799.01 2100.0 2.19 0.27
805.00 2600.0 2.54 0.10

3151.16 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09

Range = 50.810 km

Depth (m) Speed (m/s) Density (g/cm3) Alten (dB/X)

1038.00 1500.0 2.19 0.12
1509.31 2100.0 2.19 0.27
1515.00 2600.0 2.54 0.10

3251.38 3400.0 _ 2.54 0.09

8000.00 3400.0 1 2.54 0.09

Range : 52.029 km
Depth (m) Speed (m/s) Density (g/cm 3) Alien (dBrA.)

979.00 1500.0 2.19 0.12
1020.99 2100.0 2.19 0.27
1025.00 2600.0 2.54 0.10
3291.40 3400.0 2.54 0.09
8000.00 3400.0 2.54 0.09
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Table A-3. Geoacoustic Properties for Test Case 6 (Continued)

Range = 59.874 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB&)

1586.00 1500.0 2.19 0.12
2081.44 2100.0 2.19 0.27
2085.00 2600.0 2.54 0.10
3581.72 3400.0 2.54 0.09

8000.00 3400.0 2.54 0.09

Range : 65.524 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dBA)

1614.00 1500.0 2.19 0.12
1688.34 2100.0 2.19 0.27
1690.00 2600.0 2.54 0.10
3848.86 3400.0 2.54 0.09
8504.21 5100.0 2.70 0.09

Range : 69.824 km

Depth (m) Speed (m/s) Density (glcm3) Atten (dBfl.)

1713.00 1500.0 2.19 0.12
2099.88 2100.0 2.19 0.27
2105.00 2600.0 2.54 0.10
4081.08 3400.0 2.54 0.09
8193.83 5100.0 2.70 0.09

Range = 72.362 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB/4)

1650.00 1500.0 2.19 0.12
1731.42 2100.0 2.19 0.27
1735.00 2600.0 2.54 0.10
4231.64 3400.0 2.54 0.09
8009.84 5100.0 2.70 0.09

PE Workshop 11 37



PE Worbop IM: Pat 1 - Apedix A

Table A-3. Geoacoustic Properties for Test Case 6 (Continued)

Range * 7.6 km
Depth (m) Speed (W/s) Density (g/cm3) Alien (dB4)

1959.00 1500.0 2.19 0.12
2201.13 2100.0 2.19 0.27
2205.00 2600.0 2.54 0.10
4335.63 3400.0 2.54 0.09
7889.15 5100.0 2.70 0.09

Range = 74.461 km

Depth (m) Speed (rn/s) Density (g/cm3) Atten (dB4.)

1892.00 1500.0 2.19 0.12
1932.88 2100.0 2.19 0.27
1935.00 2600.0 2.54 0.10
4366.13 3400.0 2.54 0.09
7854.63 5100.0 2.70 0.09

Range = 76.656 kin
Depth (m) Speed (Ows) Density (g/cm3) Atten (dBrX)

1975.00 1500.0 2.19 0.12
2229.28 2100.0 2.19 0.27
2235.00 2600.0 2.54 0.10
4512.81 3400.0 2.54 0.09
7693.67 5100.0 2.70 0.09

Range = 78.364 km

Depth (m) Speed (Wns) Density (g/cm3) Alien (dBX)

1905.00 1500.0 2.19 0.12
2176.96 2100.0 2.19 0.27
2180.00 2600.0 2.54 0.10
4633.20 3400.0 2.54 0.09
7567.23 5100.0 2.70 0.09
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Table A-3. Geoscoustic Properties for Test Case 6 (Continued)

Range - 79.855 km

Depth (m) Speed (m/s) Density (gIcm3) Alten (dB/.X)

1702.00 1500.0 2.19 0.12
1771.04 2100.0 2.19 0.27
1775.00 2600.0 2.54 0.10
4740.88 3400.0 2.54 0.09
7457.98 5100.0 2.70 0.09

Range , 82.052 km
Depth (m) Speed (m/s) Density (g/cma) Alten (dB/',)
1879.00 1500.0 2.19 0.12
1957.76 2100.0 2.19 0.27
1960.00 2600.0 2.54 0.10
4905.68 3400.0 2.54 0.09
7297.02 5100.0 2.70 0.09

Range m 83.148 km

Depth (m) Speed (m/s) Density (g/cm3) Atten (dB/I)

2136.00 1500.0 2.19 0.12
2242.85 2100.0 2.19 0.27
2245.00 2600.0 2.54 0.10
4990.84 3400.0 2.54 0.09
7216.54 5100.0 2.70 0.09

Range = 65.040 km

Depth (m) Speed (m/s) Density (g/ca 3) Atten (dBA)

2627.00 1500.0 2.19 0.12
2721.80 2100.0 2.19 0.27
2725.00 2600.0 2.54 0.10
5077.44 3400.0 2.54 0.09
7078.60 5100.0 2.00 0.09
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Table A-3. Geoocoustic Properties for Test Case 6 (Continued)

Range m 86.883 km

Depth (m) Speed (n/s) Density (g/cm3) Atten (dBrA,)
2640.00 1500.0 2.19 0.12
3351.10 2100.0 2.19 0.27
3355.00 2600.0 2.54 0.10
5077.44 3400.0 2.54 0.09
6940.63 5100.0 2.70 0.09

Range = 91.132 km

Depth (m) Speed (m/s) Density (glcm3) Atten (dB/k)

2637.00 1500.0 2.19 0.12
3351.00 2100.0 2.19 0.27
3355.00 2600.0 2.54 0.10
5077.44 3400.0 2.54 0.09
6630.20 5100.0 2.70 0.09

Range = 93.360 km

Depth (m) Speed (m/s) Density (glcm3) Atten (dBA)

2490.00 1500.0 2.19 0.12
2554.16 2100.0 2.19 0.27
2560.00 2600.0 2.54 0.10
5077.44 3400.0 2.54 0.09
6469.24 5100.0 2.70 0.09

Range = 95.744 km
Depth (m) Speed (m/s) Density (g/cml) Atten (dBrA)
2649.00 1500.0 2.19 0.12
2663.21 2100.0 2.19 0.27
2665.00 2600.0 2.54 0.10
5077.44 3400.0 2.54 0.09
6296.79 5100.0 2.70 0.09
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TEST CASE 7

This test case problem was submitted by Finn Jensen. He had observed that some (but
not all) wide-angle split-step PE models using the Thomson-Chapman wide-angle
approach will overestimate transmission loss (TL) by as much as 20 dB. This
overestimation occurs when the PE model is applied to long-range propagation in a
leaky surface duct overlying a strong upward-refracting sound speed profile, such as
the one shown in the accompanying figure.

0- ___

WATER
I1006C = Profile Shown

\ I p P 1.0 g/cm3

E 200 - -a 0 dB/X

I. 3008
a 400!

1470 1485 1500 1515 1530 1545
SOUND SPEED (mis)

BOTTOM PARAMETERS
C = 1523.8 m/s

p = 1.0 g/cm 3

a = 0.1 dB/X

Environmental parameters for Test Case 7.

The environmental parameters of the problem are also given in the accompanying
figure. The source frequency is 80 Hz, the source depth is 25 m, and the receiver depth
is 100 m. Note that both the source and the receiver are located in the 250 m deep
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surface duct. The bottom is a range-independent, lossy fluid halfspace, beginning at a
depth of 4 km.

There are 78 propagating models in the water waveguide, one of which is trapped in
the surface duct. The first convergence zone (CZ) occurs at -50 km in range.

The SNAP normal mode model (Jensen and Ferla 1979) was used by Jensen to obtain a
reference solution. Since the environment in Test Case 7 is range independent and
over a long range (>100 km), a normal mode model should provide an accurate
reference solution.

The sound speed profile is given in the following table.

Depth (m) Sound Speed Depth (m) Sound Speed
(m/s) (m/s)

†††††††††††1497.148D.0
250.0 1502.0 1100.0 1481.0

375.0 1478.0 1340.0 1484.0

S425.0 117.0100.0 1487.0~
500.0 1476.0 1800.0 1490.0

600.0 1476.5~ 2600.0 14987

700.0 1477.0 3000.0 1506.8

900.0 1479.0
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Appendix B - Reference Solutions to the
Test Cases

Appendix B contains tabular data from the reference solutions used in the Test Cases.
The tabular data represent selected samples from the larger data sets that were used to
plot the reference curves, and are sufficient to generate the reference curves used in
Test Cases 1, 2, 3A, 4, 6, and 7. This should prove useful to anyone desiring to
compare results from other numerical models against the reference solutions used in
the PE Workshop II.

CASE 1 - REFERENCE SOLUTION DATA
Range IL (dB) Range TL (dB) Range IL (dB) Range iTL (dB) Range TL (dB) Range TL (dB)(km)(k) (kin) (kin(k) (kmn)

0. 7 .17 1.70 7±74ý 3'ý38. 71.92 5.06:72
0.10 67.08 1.78 83.84 3.46 79.44 5.14 70.42 6.82 72.22 8.50 86.33

0.26 66.65 1.94 70.68 3.62 73.64 5.30 74.42 6.98 74.90 8.66 78.45
MS ~ ~ ~ ~ ~ ~ ~ ~ i ,o 7 1 06 iS 11 ?I'~

0.42 66.15 2.10 67.03 3.78 68.83 5.46 100.21 7.14 82.45 8.82 75.34

0.58 66.06 2.26 70.72 3.94 71.45 5.62 75.24 7.30 87.88 8.98 7408
* t 2 z ,34 : 7'8i . 4.02 76.58 4,70 72-68 . M 38 80.58 73.: '

0.74 67.06 2.42 82.55 4.10 95.73 5.78 71.31 7.46 77.06 9.14 74.01
0.12: 68.32 P-60 721 4.18 77.61 5.66 70.99 :7ot 74.96 *tý 74*:
0.90 70.50 2.58 68.67 4.26 72.25 5.94 71.51 7.62 73.72 9.30 75.00
.0* 74.43 2.66 67.5>9 4.34 70.03 $.02 72.91 7.70 n.0*4 9.38 75.93

1.06 83.28 2.74 68.34 4.42 69.47 6.10 75.49 7.78 72.82 9.46 77.20
1.14 80.55 2.82 7120 4.50 70.27 6.18 80.t 7.86 73.02 9254 78.92
1.22 72.85 2.90 79.06 4.58 72.65 6.26 93.03 7.94 73.63 9.62 81.30
1.30 69.17 Z96 82.43 4.66.7.77t634 85.24 8.02 74.68ý o.10 84.79
1.38 67.24 3.06 72.54 4.74 96.25 6.42 78.17 8.10 76.28 9.78 90.90
1.48 68.82 3.14 69.15 4.82 79.42 6.80 '74.86 ~8.18 '78.64 9.88B 112.4
1.54 66.93 3.22 68.17 4.90 73.76 6.58 73.03 8.26 82.29 9.94 90.74
1.62 88.70 33•0 88.06 4.98 74 6. 7 8.34 89.11
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CASE 2 - REFERENCE SOLUTION DATA

ITL (dB) | TL ()TL(
Range ZR ZR Range ZR ZR Range ZR ZR Range ZR ZR
(kin) 20m 150m (kin) 20m 150m (kin) 20m 15m (kin) 20m 15m

0.06 34.46 41.12 1.82 63.95 63.49 3.58 61.99 68.70 5.34 75.22

0.14 40.13 39.94 1.90 69.87 70.48 3.66 63.78 64.96 5.42 76.01

0.22 42.63 48.03 1.98 64.6 67.67 3.74 682 64.05 5.50 76.64

030 49.40 4670 2.06 60.86 65.45 3.82 65.47 64.72 5.58 77.47 81.34

0.38 50.55 49.64 2.14 57.42 68.38 3.90 65.93 66.07 5.66 77.92 80.32:ii'a*:: !'!i +• sty # c s 'asz.......

0.46 51.51 51.23 2.22 56.73 7191 3.98 66.24 67.78 5.74 7806 79.24

0.54 51.11 52.52 2.30 57.20 71.48 4.06 66.58 69.69 5.82 78.09 78.13
'0-58~ O 1541( *$( Muw m "m t mc# i
0.62 49.25 57.36 2.38 59.82 7060 4.14 66.90 71.92 5.90 7808 77.08

5040 5058 2AV 0I40~*S i$:448 07.06 7343$ 9 t8*1$
0.70 53.27 56.73 2.46 82.89 68.57 4.22 67.31 74.40 5.98 78.14 76.06
0.74 504, $7.63 2.5 Q.141 07,60.4.26 6.56, 5.73 C.02.74.24.7*2
0.78 55.65 55.17 2.54 60.28 67.17 4.30 67.6 77.06 6.06 78.36 75.50

0.86 55.86 48.95 2.62 57.82 66.77 4.38 66.57 79.37 6.14 78.61 75.09
0.90 5$.4* 4A.0 U61 bUT6 8#1O0 4.42 *6*0. 80.18 6.1 78O> M~l
0.94 57.45 47.51 2.70 57.83 67.69 4.48 69.40 60.74 6.22 78.99 74.66
to.9O .5* 47.61 2.14 565 08.03 4$, 09.44 $1.06' 0.26 79.17 74,W
1.02 56.18 49.18 2.78 58.36 70.51 4.54 70.25 81.19 6.30 79.35 74.23

0 "5.60- -Stgo 242' 5*0fl 4.48 "70.1 1-t* 64ý4 79456 1444
1.10 58.77 53.45 2.86 5.61 76.08 4.62 71.14 81.34 6.38 7978 7377
1.14 e2.04 58.80 ZOO0 57.39 19.74 '4.66 711.51 81.64 0.42 79.91 "W.5
1.18 62.07 58.56 2.94 5730 82.77 4.70 71.85 81.74 6.46 80.15 73.36
1.2 60.99 61.81 Z8 $•7. 1 17 84.68 4.14 72.-20 82.07 06.50$0.34 7$3It•.
1.26 56.46 64.10 3.02 5899 85.45 4.78 72.47 82.72 6.54 80.57 7298
'1.30 54.71 62A4 3.06 58.64 $160 4.62 72.64' 83.e7 6.58 8040 72.817
1.34 53.47 59.72 3.10 58.72 81.73 4.86 72.81 84.83 6.62 81.01 72.67
1.38 52.14 506*4 3.14 56.63 80.58 4.90.72.99 6.830.6.86.81.21 7.6454
1.42 52.92 58.62 3.18 58.58 79.62 4.94 73.09 68.38 6.70 81.46 7242
1.40 54.14 5913 3.* 5 W6.3 79 .7.7 4.96 73.14 91.36 6.74 81."72.12*
1.50 56.38 60.04 3.26 58.54 77.92 5.02 73.25 95.19 6.78 8207 7223
1.54 50.3 01.19 3.30 56.60 7'1.00.61*06 73.41 97.17 '642 82.3 ý7217"'
1.58 61.88 68.60 3.34 575 76.12 5.10 73.54 94.56 6.86 82.58 72.12
1.82 0t.02 $30.39 30 6.7.02 75.12 5.14 70.66 91.24 6.*0 82.66 fl$O
1.66 58.65 62.81 3.42 5748 74.00 5.18 73.91 88.61 6.94 83.1 720
1.70 57.49 02.01 3.46 58.12 72.186.122 74.20 86.16 696 83.44 1/1.00.
1.74 57.84 61.50 1 3.50 59.12 71.45 5.26 !74.49 85.53 7.02 8.52 71.99
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CASE 3A - REFERENCE SOLUTION DATA
TL (dB) Rang. TL (dB) Range TL (dB) Range TL (dB) Range TL (S) Range TL (d) Range TL(dB) Rang. TL cm)

(km(Own) OM) (km) (km) (km) (km)

.016 44.79 0.296 45.39 0.576 55.41 0.856 54.03 1.136 58.74 1.416 54.96 1.896 59.50 1.976 5820

0.032 47.90 0.312 47.00 0.592 56.81 0.872 53.58 1.152 60.05 1.432 54.75 1.712 59.70 1.992 58.40

0.048 45.82 0.328 47.81 0.608 56.89 0.888 53.42 1.168 60.62 1.448 54.98 1.728 59.80 2.008 58.24

0.064 41.93 0.344 49.12 0.64 58.61 0.904 53.39 1.184 61.54 1.464 55.18 1.744 59.90 2.024 58.75

0.080 40.39 0.360 49.13 0.640 59.91 0.920 53.14 1.200 61.21 1.480 5502 1760 59.70 2.040 58.35

0.096 38.98 0.376 50.00 0.656 61.96 0.936 53.35 1.216 61.60 1496 55.65 1.776 59.70 2.056 58.88

0.108 38.72 0.388 49.84 0.668 63.94 0.948 53.12 1.228 61.06 1.508 55.19 1.788 59.60 2.068 58.62
0.11 5874 O.3Q 49.84 0.76$67 9 88 -w two6 5.1 1*30u 00. i4wb*
0. 124 38.67 0.404 50.16 0.684 68.04 0.964 53.43 1.244 60.71 1.524 56.01 1.804 59.90 2.084 58.86

AiM a 6&41 12 50V:.6W 6$g::ess.37:9fl :: 0.S2 .......0....::
0.140 38.49 0.420 50.58 0.700 70.04 0.980 53.47 1.260 59.92 1.540 55.93 1.820 59.80 2.100 58.76
0.44 38A4 0.428 50.72 0.708 70.78 01.988 531 1.208 59.39 1-w4 660ý0 'i in't
0.156 39.20 0.436 51.25 0.716 69.68 0.996 53-91 1.276 5892 1.556 5655 1.836 5960 2.116 58.84
(1.14 ý0$3 3AM4 51.*8 0.724 6S.i0 1004 54.08 1,284 58.5! 1.Z64" 5.0* fMq " 114 w$

0.172 39.48 0.452 52.13 0.732 64.88 1.012 54.08 1.292 58.29 1.572 56.82 1.852 59.50 2.132 5873
0. 11w 3W74 3A00 2,0 0.740 64A11 I.02D 54.26 1.3M0 57.97 14580 B6.64 1*.860 t~CSi
0.188 40.17 0.468 52.27 0.748 62.97 1.028 54.74 1.308 57.54 1.588 57.25 1.868 59.30 2.148 58.74
0.196 40.563 0.476 62.77 0,756 81.05 1,O3S 55.10 1.316 57!.16 .657.6.BiAS t .sw.t.I . tin....
0.204 40.73 0.484 53.14 0.784 59375 1.044 55.15 1.324 56.96 1604 5769 1.884 59.10 2.164 5866
O212 40.*9 .A92 53V .3) 772 69.36 1.062 55.32 1.332 56e*s8 1.612 57.75 1.8*0 5bA( t aM .7if
0.220 41.43 0.500 53.68 0.780 58.68 1.060 55.87 1.340 56.60 1620 5803 1.900 59.00 2.180 5880
0.22 ,8 41.9 0.508 54.21 0.788 57.77 1.068 56.45 1.348 562".1.6286.8.24 1.9m06.58*Z188D 58..74
0.236 42.15 0.516 54.65 0.796 56.75 1.076 56.66 1.356 55.96 1.636 58.23 1.916 58.60 2.196 58.69
b.2I42.t35 0.624 5471 3.804 68.3 1.084 56.fl6 1.364 5.93 1.644 5.20 1.*2 4 S&.70! 2204 .8
0.252 42.70 0.532 54.75 0.812 56.22 1.092 57.20 1.372 55.89 1.652 58.35 1.932 5842 2212 5905
0.200 4S27 0.540 64.8 0.*20 66.76 1.100 57.85 1.00 I 5W 5.6 1 LO1.O 58.0 1.940 M8.f3 2ý*2O &0
0.268 43.82 0.548 55.02 0.828 55.12 1.108 58.29 1.388 55.38 1.668 59.00 1.948 5810 2228 590
028 "4.24 0.5% 5.Z3 0" 5489 1.11$ 58.48 1.396 8526 1.676.69.20 1.908.58..It -200O.

1.124 58.21 1.404 55.08 1.684 59.40 1.964 58.10
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CASE 4- REFERENCE SOLUTION DATA

Range ZR ZR Rang. ZR ZRR Range ZR ZR Rang. ZR ZR
(Ian) 95mn 150mn (kin) 95mi ISim (kin) 956m i~i (kmn) 95mn 150M

0.03 29.39 36.35 0.99 51.28 50.59 1.95 5.9 56.21 2.1 61.751 55.6

0.07 34.47 43.55 1.03 52.45 47.99 1.99 61.05 59.

0.11 43.75 37.99 1.07 54.45 47.64 2.03 571 29 1.

HIM=7
.0.15 38.97 41.26. 1.11 62.22 50.50 2.07 57.28 59.35 3.03 158.6 543

0.19 41.09 49.51 1.15 61.65 50.50 2.11 58.11 62.40 3.07 56.

0.23 48.45 52.20 1.19 60.80 49.98 2.15 54.82 61.32 3.ii 55.0 5.3

0.27 50.76 44.980 1.23 64. 60 53.40 2.19 55.16 63.01 3.17 54.06 57.92

0.31 48.16 45.84 1.27 57.43 53.79 2.23 55.95 62.86 3.23 54.25 604

0.35 54.53 52.00 1.31 57.33 51.75 2.27 53.00 59.84 3.29 5427 6

0.39 48.26 56.67 1.35 59.52 53.5 2.31 52.88 61.40 3.35 55.50 654

0.43 45.34 61.37 1.39 55.30 53.87 2.35 54.65 60.86 3.39 57.51 66.75

0.47 48.70 54.12 1.43 55.25 51.10 2.39 52.41 57.85 3.45 63.16 69.58

0.51 52.33 46.73 1.47 56.84 51.45 2.43 51.26 60.18 3.49 71.3M4 711
W ~~~~%%U~~~V W tE t W 5* I% tt*W st

0.55 51.6 45.59 1.51 53.10 52.21 2.47 52.62 64.10 3.53 78.30 75.90

2.394

0.59 53.71 48.05 1.55 51.93 51.19 2.51 52.48 58.33 3.57 66.08 78.48
51.58 .52.8 22.5

0.63 55.04 48.05 1.59 52.98 51.78 2.55 51.57 59.15 3.63 59.93 78.97
,g. M2* 0% 11 50.77 $2.22 tAT:: 521.2 69.06 3A $.W T i

0.67 50.47 47.22 1.63 51.14 54.26 2.559 52.89 64.36 3.6 57.72 74.75
A6, SOr G 2.32. 53.4 02.0"1,55' SW

0.71 49.41 50.41 1.67 50.16 54.05 2.63 53.71 3.73 5591 71.09
4oar *s5.6 Me~ 53.r i2.16 sss 2.08 MM t i ;u
0.75 49.03 51.84 1.71 52.04 54.23 2.67 53.02 57.92 3.77 55.27 68.95

tf720 .$V4 170 :50.21 4.97. 2M9 56.7% 5720 t10 itfl
0.79 47.76 49.03 1.75 52.49 56.26 2.71 54.94 61.13 3.81 54.93 67.78
0 : '4$*0$ W.61 1." 52.90 50: 12 2.73 54.8?' 567.00 3.8 .
0.83 47.60 51.09 1.79 51.19 55.96 2.75 58.39 57.43 3.85 54.90 67.26
NO* .4.n s 5.0se 1.81 54.30 56.39 2.77 56.72 lO.96 3187 5600 MW*
0.87 47.53 55.35 1.83 53.47 55.11 2.79 57.16 56.79 3.89 55.19 66-56
0*W 47.4 52.i 1.uS' Z41 56.52 2.1 1l2 57.33 3*93 R6.7 $0.77
0.91 47.21 50.43 1.87 57.64 55.65 2.63 58.33 61.02 3.95 56.21 66.91"
6*0' '40.7% 50* t8 58A2 56.73 2.86 59.3U 56.'14 3.99 57.34.' 88.04I
0.95 48.32 50.64 1.91 55.33 55.87 2.87 63.50 157.34 4.01 58.09 67.07
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(k) (M)~ (4km (km) 3 (M) (km) (M) (km) (M) (km (M

12.49 81797 2868 4.10 44.62 90.7663.39 91.81 79.3793.2 8 7 8.453.5

8.36 $ 27.84 876.89 44 859.75 847.76 920 78.13 96.5540 .9 45

15.32 76. 9.31.2 80.56 45.670 95.29 651.87 983.460 .82.2 90918.8

16.0~19 4751 30.85 88.78 40.87 984.6 83.30 8.00 72.28~. 9.40

18.01 80.859 34.04 90.86 48.163 87.420 68.369 91.35 84.92 93.16 90.11 96.94
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~~CASE 7C - REFERENCE SOLUTION DATA (SureDeth=IM_
Range TL (B Range iTL(B Range iTL(B Range iTL(B Range T(d)Range iTL(B

6.6 704 20.9 78.64 355 87.58 78.00 96.7?106.7100.882 83.0 96.6

2.00 67.07 27.00 81.26 52.00 74.56 77.00 91.65 710.00 986.16 127.00 9388.0

4005 78.19 29.0 8.63 80 59 4001 75396 79.00900 100. 4.00 801.24 17.290 9.6

8001 75.46233.81 82.75 58.00 84.7 830 9.2 180081 6.3944 741 2201 913.00875

10009 75.00 35.00 83.00 60.92 87.0-5 845.0 91.365 110.00 95.4 13.5.0 87279

14.00 8.69 900 837 640 872589.0 91.00 10140 8824 13.0 8.8

16.00 678.075 41.00 81.97 66.00 90.70 91.00 90.92 116.00 86.38 141.00 88.097

18.00 78.66 43.00 84.43 68.00 90.57 793,.00 91.52 118.00 89.7 1.43 900.883

2.000 79380.45.00 84.629 76000 87.55 95.00 892.49 120.00 91.64 14.088.84
LOO0 `1w0 4.00 04.73 11.00 7.310 00.00 we Vt.0 OIs t8.0si87
2200 80742 47.00 84875 72.00 847.42 97.00 93.30 122.00 89.25 147.00 87.26

iv.00 75.0 30..00 8.0$0 60.00 87.0 85.00 90.4? 113.00 87.24 135. 008.27
124.00 80.99 49.00 85.98 74.00 89.29 99.00 88.07 1124.00 86.392 149.00 89.74

17.00 ia. 50v.88* 7 .00307 100.00 90.14 1125.00 88087 i0O .
48.0 78 Woso 66 4.0 8.3 6.0 9.7 9.0 15 1.08.3 130 83



Appendix C - Tappert's Reflections on the
Origin of Underwater
Acoustic PE

In 1972 Fred D. Tappert and R. H. Hardin developed the parabolic approximation for
underwater acoustic propagation. The records of this underwater acoustic parabolic
equation (PE) method are chronicled in a number of publications. An excellent account of
this early development, including pertinent references, is given by Tappert'.

From that point on, their split-step PE method evolved into numerous computer codes.
One early version, the AESD PE model2, eventually evolved into the Navy Standard PE
model (in 1987). The original Tappert version has continued to evolve at the University of
Miami. Current versions of it (MIPE and UMPE) were used on the test cases in the PE
Workshop II. Along the way, vectorized versions of the Tappert PE method evolved into
complete hardware-software computation-display systems (e.g., the PESOGEN system3

(circa 1986), and later the coupling of that system into the OPTAMAS system4 (in 1988)).

One of the high points in the PE Workshop II was Fred Tappert's recreation of his initial
presentation of the PE method to his colleagues at Bell Laboratories. The workshop's par-
ticipants viewed with interest the original viewgraphs used by Tappert as he recreated that
lecture. The editors felt that this was an opportunity to preserve a bit of history and have
thus reproduced those original viewgraphs in this Appendix.

1F. D. Tappert, "The Parabolic Approximation Method," in Wave Propagation and
Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis (Springer-Verlag, New
York, 1977), Chapter 5, pp. 224-287.
2 H. K. Brock, "The AESD parabolic equation model," AESD TN-75-07, Office of Naval

Research, Arlington, VA (1975).
3"PESOGEN-II User's Manual Supplement," Version V2.8, Technical Manual TM 03-90,
Daubin Systems Corp., Key Biscayne, FL, February 1990.
4"OPTAMAS 2.1 User's Guide," Systems Integrated, 8080 Dagget Street, San Diego, CA,
September 1990.
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PART 2 TEST CASE RESULTS

INTRODUCTION

This part of the PE Workshop II proceedings contains the solutions to the 7 test case
problems posed in the workshop. Part 2 is structured such that for each test case the
following format is followed:

"* The objective of the test case problem is stated.

"* Relevant background information is presented. The rationale of the test case is
discussed in relation to that particular feature of the PE model that is being tested.

"* The test case problem is posed, accompanied by a figure which illustrates the
environmental conditions of the problem.

* The origin of the reference solution is discussed.

* Workshop results from each PE model that was applied to that test case is plotted
together with the reference solution for comparison. This is followed by a brief
discussion of the results.

* A summary of the findings is given.

• Relevant contributed papers in Part 3 of the workshop proceedings are listed as
further readings.

Reference Solutions

The reference solutions were obtained from many different sources. In Test Case 1 the
reference solution is the analytic solution to the Lloyd's Mirror problem. In Test Case
2 and 4 it was a numerical solution obtained from the coupled mode model, COUPLE
(Evans 1983; 1986). In Test Case 3 the reference solution was obtained from the
seismoacoustic finite-element model with shear waves, SAFE (Murphy and Chin-Bing
1991; Chin-Bing and Murphy 1993a; 1993b). In Test Case 6 the reference solution
was experimental acoustic data (Fisher et al. 1988; 1989) taken in a region where
environmental-geophysical conditions and parameters were considered "known." In
Test Case 7 the normal mode model, SNAP (Jensen and Ferla 1979), was used to
generate the reference solution. In each case, the reference solution was considered
the best available solution that could be obtained. Both the COUPLE and the SAFE
models give the complete numerical solution to the nonhomogeneous Helmholtz wave
equation, i.e., the solution to an elliptic boundary value problem. (The PE solutions
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are solutions of a parabolic initial value problem that approximates this elliptic
boundary value problem.) Since the SAFE model includes shear wave speeds and shear
attenuations, it was used as the reference solution for Test Case 3. Test Case 7
involved long-range propagation of a trapped, leaky mode in a stratified, planar
environment; the SNAP model contains all of the significant physics for such a
scenario.

Tabular data to the reference solutions are given in Appendix B of Part 1.

Table 2-1. Models Used Versus Test Cases

MODELS TEST CASES

CU USED I :i 2A 3• A SA= S 1 7

Ref.: COUPLE x I X IN
DREP x x x M x W X
DREPS X X M X • N . X
FEPE 0

FEPES W X M
FEPE ROT X •

FEPES ROT M X

IFDPE M X M X • X M X, X M X 1"
IFDPE SAC X x

IMPPE raw X &'i X •:XX X
LOGPE MX

MIPE o .. X "X X . X X X _ X X X
NAVY STDPE alX X X W X W X X.' X X X
NON EC FE • X A A '.

OPT t X j X g X Xz- X 5'(

PAR EQ ........

Ref.: SAFE .- X
Ref.: SNAP "-:X

T-CPE PE-orshp X
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Table 2-1. Models Used Versus Test Cases (Continued)

MODELS DESCRIPTION OF MODELS AND THE USERS
USED

Ref.: COUPLE Richard Evans' coupled mode model; used by Evans to obtain reference solutions.

b y.D ~ ,.17_
DREPS The elastic PE model developed and used by Gary Brooke of DREP. It includes

shear wave speeds and shear wave attenuations.

FEPES A version of Collins' FEPE model that includes shear wave speeds and shear wave
attenuations; developed and used by Collins.

PePo AOT.. A, vd "- of doilii hot~ With rotate oriae4tm otwt~e- n
interface Is horizontal rather than sloping.Collins.use"~ as ai check for Te CaiseI

FEPES ROT A rotated version of Collins' shear code, FEPES, with rotated coordinate system.
Collins developed it and used it as a check for Test Case 3.

fF~t Wke-aile Implicit fite-dlference PE model developed and used by Ding Le..

IFDPE SAC Ding Lee's IFDPE model used by Finn Jensen (SACLANTCEN).

IMPPE The IFOPE model used by John Papadakis with his Imvpedance bottom boundary.
LOGPE Split-step PE model by Berman, Wright, and Baer. In range-independent environ-

ments, its "rays" are identical to those of the Helmholtz eq.; used by Finn Jensen.
MIPE; UMPE.The Fred 'rapp rt and Lan Nghiem-Phu University of Miamil wide-angle spilt-step

PE nmodes; used by Lan Nghiem-Phu....... .

NAVY STD PE The U.S. Navy's standard version of wide-angle split-step PE; used by Eleanor
Holmes and Laurie Gainey.

NON EC FE Collins' PEPE model without its energy conse.vation enhancementused by Collins.
OPT The split-step PE model used in the OPTAMAS system; used by Nils Paz.

PAREQ The $ACLANTCEN version of wide-angle split-step PE; used by Finn.Jensen.
Ref: XXX The model or data that was used to provide a reference solution.

.a:SFE....... py an Chin-Sing finite-elemrent sesocsi model ith shear wave
speed and shear wave attenuation; used as a reference.

Ref.: SNAP The SACLANTCEN normal mode model; used by Finn Jensen as a reference.

T-CPE Thomson-Chapman wide-angle version of PE used by Finn Jensen.

XXX SAC Other models used by F. Jensen; e.g., COUPLE SAC: COUPLE model run by Jensen.
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Workshop Models

Table 2-1 gives a list of the models that were applied to each test case. An identifying

label (used in these proceedings) is given to each model together with a brief

description of the model. Detailed discussions of several of the models and their

application(s) are presented by the workshop contributors in Part 3 of these

proceedings. Not all of the papers in Part 3 contain adequate references, but in

totality, the PE references cited by all the papers in Part 3 form an adequate PE

bibliography. That bibliography is given at the ends of Part 2 and Part 3. References

cited in Part 2 are also in this bibliography.

Research PE Models and Operational PE Models

The various PE models that were applied to the test cases can be classified into two

categories: research and development (R&D) models and (fleet) operational models.

The demarcation between the two categories is prominent. Operational PE models are

configured to run on a small in-the-field computer (i.e., onboard ships and in naval

installations), with selected parameter ranges such that the trade-off between

computational speed, accuracy, portability, survivability, and system integration are

optimized to fulfill the required mission. Research models have no such constraints and

make few, if any trade-offs; their purpose is to faithfully include the required physics

and to give highly accurate and reliable answers. Many research PE models now use

finite-difference (Lee and McDaniel 1983) and finite-element (Collins 1990b)

solutions combined with the full computational capabilities of powerful

supercomputers. Thus, it would be expected that the research PE models would give

more accurate results than the field-operational PE models.

The demarcation line between the various PE models is not so clear. PE models that

are in the operational category were once in the research category. Furthermore, the

same PE model may exist in both categories, with the only significant difference

contained in the constraints imposed by the operational situation. All of the operational

PE models use the split-step solution technique (Hardin and Tappert 1973; Tappert

1977) since it uses FFT's and can do computations more rapidly than other PE solution

techniques. The split-step PE models are, therefore, often associated with operational

PE models. However, the split-step PE models without the operational constraints are

frequently used in basic research (Jensen and Ferla 1990). Thus, in this workshop three

categories of PE models are represented: the research PE models, the modified

operational PE models with many of their operational parameters changed so that they

can give a better answer, and the operational PE models.

60 PE Workshop II



PE Workshop H: Part 2 - Test Case Results

The Navy Standard PE model (labeled in these proceedings as "NAVY STD PE"), the
University of Miami PE model (labeled as "MIPE"), and the PE model used in the
OPTAMAS system (labeled as "OPT") may be classified as operational PE models. These
three models have evolved from the original Tappert-Hardin split-step PE formalism
(Tappert 1977). Different versions of the split-step PE model are employed in a "field
operational mode" to produce NAVY STD PE and the OPTAMAS system. NAVY STD PE is
the standard version of PE that is used by the U.S. Navy in operational acoustic
calculations. It undergoes frequent official revisions and improvements as determined
by the Navy. The MIPE model is an advanced version of Tappert's split-step PE model
and also undergoes revisions and improvements as determined by its developers. An
earlier version of MIPE forms the basis for the PESOGEN (PE Solution Generation)
system; this is a hardware-software combination designed to supply rapid PE
calculations and color graphics. OPTAMAS is a proposed tactical prediction system that
is based on the PESOGEN system and is now in the implementation phase. The objective
of the OPTAMAS system is to provide sensor placement and utilization guidance on a
tactical scale. Editors' Note: Part 3 of these proceedings contains papers on the NAVY
STD PE model (Holmes and Gainey), on the MIPE model (N.-Phu, Smith, and Tappert),
and on the OPTAMAS system.

In the PE Workshop II the NAVY STD PE model was run using its operational parameters
and its results are fairly representative of "in-the-field" Navy predictions. The OPT
model was also run using its set of operational parameters which included several
time-saving trade-offst. Its results are representative of the type of PE calculations that
would form the basis for "tactical decision aids." The MIPE model users/developers
applied knowledgeable (nonoperational) selection of parameters in their use of the
model so that its results are representative of what the operational PE model could do
if operated in an unconstrained mode and by a knowledgable user.

Therefore, the PE models' results for the 7 test cases presented in these proceedings
span the 3 categories-from research PE models to field-operational PE models, and
several configurations in-between.

ý The custodian of OPTAMAS did not change its operational parameters for the PE
Workshop II test case results nor did he change its reference distance to the distance of
I m as was used by all other workshop contributors. He estimates that the results from
OPTAMAS will be approximately 2 dB re 1 m different from the results of the other
models in the PE Workshop II.
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TEST CASE 1 Lloyd's Mirror - Wide-Angle

Propagation

OBJECTIVE Determine the half-beamwidth propagation capability of the PE models.
The half-beamwidth propagation capability includes both the wide-angle capability
and the angular distribution of energy resulting from the starting field. It is the
maximum angle that can be used and still maintain accuracy.

BACKGROUND The Parabolic Equation (PE) model (Hardin and Tappert 1973) that
was introduced to the underwater acoustics propagation community in 1973 (Spofford
1973) could accurately include a 170 - 200 maximum angle of half-beamwidth
propagation. This original version of the split-step PE models has become known as
the "Standard PE" approximation.

In the early 1980's this maximum angle of half-beamwidth propagation was extended
to approximately 400. The finite-difference PE models accomplished this by using the
Claerbout wide-angle approximation (Claerbout 1976; Botseas et al. 1983). The
split-step PE models accomplished this by using the Thomson-Chapman wide-angle
approximation (Thomson and Chapman 1983).

Currently there are PE model implementations (Collins 1988a; 1988b; 1988c) that
come very close to full 900 half-beamwidth propagation. The finite-difference and
finite-element PE models employ a high-order Pad6 approximant to accomplish this
wide-angle propagation.

THE TEST CASE PROBLEM To test the capabilities of these wide-angle PE
propagation models, a very simple Lloyd's Mirror problem was selected as Test
Case 1. The problem consisted of a single fluid layer (half-space) with a
pressure-release surface and a constant sound speed of 1500 m/sec. The density is 1.0
g/cm 3 and there is no attenuation. The fixed point depth (source depth) is 350 m
with a moving point depth (receiver depth) of 3990 m. The frequency is 40 Hz. Figure
2-1.0(a) gives a schematic drawing of the problem.

Range as a function of maximum launch angle is shown in Fig. 2-1.0(b) for the
surface reflected (SR) path and the direct (D) path propagation. It was obtained from
the geometry of the source and receiver in Test Case 1. A PE model's wide-angle
capability can be established by noting the range where the PE model's prediction
starts to agree with the reference solution. The corresponding angle in Fig. 2-1.0(b) is
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(a) Lloyd's Mirror Environment-Test of (b) Range vs. Maximum Launch Angle.
Wide-Angle Propagation

Fig. 2-1.0 Environment for Test Case 1.

the maximum angle of propagation for that range. As an example of the usage of
Fig. 2-1.0(b), to include all of the pressure field at a range of 1 km from the source
(and at a depth of 3990 m) would require a PE model that can include a
half-beamwidth propagation in excess of 750. This is indicated by the dashed lines in
Fig. 2-1.0(b).

THE REFERENCE SOLUTION An analytic reference solution was generated for
this Lloyd's Mirror problem by using an image solution technique.

RESULTS AND DISCUSSION This problem is a good illustration of the expertise
required of the user. A starting field for the PE model must be chosen that represents
an acoustic point source in the near-field. The emitted acoustic field near the source
should be at least as wide in half-angle as the particular PE model will propagate. The
"tried and true" normal mode starting field cannot be used since the problem is a
half-space and thus has no trapped modes. The appropriate choice is an image starter.

The analytic reference solution is shown in Figure 2-1.1 along with the PE models'
predictions. The vertical axis is transmission loss (in dB re I m) and the horizontal
axis is range (in kilometers).
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All of the PE models used to solved Test Case I demonstrated the capability to
accurately propagate fields with half-beamwidths of greater than 700. Impressively
some of the R&D PE models were capable of half-beamwidth propagation
approaching 900 and the operation-level PE model (NAVY STD PE) was in excess of
750 half-beamwidth propagation.

A closer examination of Fig. 2-1.1 using enlarged plots confined to the first 2 kmn in
range (and not shown here) showed the following details.

0 The results for the FEPE model do not show prominently on plot (a) of Fig. 2-1.1
because they lay on the curve of the reference solution (i.e., they are in complete
agreement).

9 The solution provided by the DREP model, shown in plot (b), reaches agreement
with the reference solution at a range of -500 m, implying a >800 capability (see Fig.
2-1.0). The DREP model used in this test case is the Thomson split-step PE model with
the Thomson-Chapman wide-angle approximation.

0 The SACLANT solution (plot (h)), which for this case is the Thomson-Chapman
split-step PE (T-CPE) and run by Finn Jensen, gives a perfect match to the reference
solution after -1.5 kin, implying a >650 capability.

* Overplots of results from the Navy Standard PE model (NAVY STD PE), the MIPE

model, and the PE model used in the OPTAMAS system (OPT) all compare well to the
reference solution. These three models have evolved from the original Tappert
split-step PE formalism. A visual comparison of the models' results in Fig. 2-1.1
show that except for disagreement in the first -700 m, MIPE matches the reference
solution very well. NAVY STD PE shows more loss as well as a range shift in the
position of the peaks and nulls. OPT also shows the same range shift problem as NAVY

STD PE with the additional feature of the "steps" in the curves. These "steps" are a
consequence of the system's requirement to write the results in integer format rather
than floating point format. This is done to reduce the amount of computer storage
required.

* One comparison that is noteworthy is the two PE models based on the implicit
finite-difference method. IFDPE is the original version of the model developed by
Ding Lee. The IMPPE is a version of IFDPE that replaces the familiar PE false-bottom
treatment with an impedance boundary condition. In principle, when the impedance
boundary condition is properly applied, the results from the two models should be
virtually identical. The big difference is in the CPU runtime where IMPPE can execute
a problem in about half the time of IFDPE since the bottom layers can be replaced with
a single impedance layer and thus significantly reduce the depth that must be
considered.
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* The result from a non-PE model (labeled CU) is also shown in Fig. 2-1.1. A full
discussion of the technique behind this model can be found in the paper by Steinberg
and McCoy in Part 3. The model's prediction had the right form, but due to an
arbitrary source strength, the dB level of the predictions differed from the reference
solution by a significant amount. Increasing the loss by a constant value of 32 dB
beyond the CU model's predictions produces a quite respectable match with the
reference solution (as is shown in plot (i) of Fig. 2-1.1).

* Finally, as a result of the comparisons made at the workshop together with the
knowledge gained from this test case problem, the developers-custodians of the NAVY
STD PE model have improved the source algorithm to take full advantage of the PE
model's capability. The new result for Test Case 1 from this revised version of NAVY
STD PE is shown in Fig. 2-1.10) and labeled as "New NAVY STD PE." Closer
agreement with the reference solution now begins at a range less than 1 km. (Compare
this result with the earlier one shown in Fig. 2-1.1(d)). Comparison with the MIPE
result in Fig. 2-1.1(c) indicates that the NAVY STD PE model is close to equaling the
MIPE result. (The MIPE results could be viewed as the upper limit to what the
operationally constrained NAVY STD PE model might achieve.) This improvement in
the NAVY sTD PE model is a direct result of the PE Workshop II.

Test Case 1 examined the field out to a range of only 10 km. A small phase error as a
function of angle could still exist within the results shown in Fig. 2-1.1. Only at much
longer ranges would the cumulative effects of such an error be noticeable.

The PE models' wide-angle capabilities with minimum phase errors (shown in Fig.
2-1.1) are valid for the simple homogeneous environment presented in Test Case 1. A
test of wide-angle capability with minimum phase error in a strongly refractive
environment would be a more difficult problem and the results from Test Case 1 may
not be illustrative of the performance of all PE models in such an environment.

SUMMARY All the PE models demonstrated the capability to accurately compute
propagation loss for half-beamwidth angles up to ±750, or better. The operational PE
models exceeded 750 while the R&D models approached full 900 propagation. Test
Case 1 has resulted in an improved starting field for the NAVY STD PE model.

FURTHER READINGS IN PART 3 For more in-depth discussions on the use of the
wide-angle approximation in the PE models, refer to the papers in Part 3 of these
proceedings. The paper, The Self-Starter by M. D. Collins, is devoted to starting fields
for the PE models. Two papers are devoted to the operational PE models and several
of the papers discuss the various research PE models.
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Fig. 2-1.1. Test Case I Results (Continued)
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TEST CASE 2 Conservation of Energy in

Range-Dependent Propagation

OBJECTIVE Test the capability of the PE models to conserve energy in propagating
("marching") over range-varying bathymetry.

BACKGROUND Matching the boundary conditions in the horizontal direction (as a
PE model "marches" in range) requires continuity of the pressure field and of the
normal derivative of the pressure field (i.e., continuity of horizontal particle velocity).
However, a parabolic equation solution allows only one of these boundary conditions
to be satisfied. Experience has shown that the better result is obtained by matching the
pressures rather than the velocities.

The consequence of propagating (matching) only the pressure field as a PE model
marches in range is seen in range-dependent propagation, where the TL increases too
rapidly in going upslope, and decreases too slowly in going downslope. In an
upslope-downslope problem, the greatest inaccuracy occurs at the apex while the
upslope and downslope errors tend to cancel one another, often producing a
reasonably good result after the upslope-downslope propagation has been completed.

Recently an asymptotic correction to the energy conservation problem has been
developed. (Collins and Westwood 1991; Porter et al. 1991) The acoustic field
computed by the PE model is divided by (pc)lr2 (i.e., the square root of the impedance
given by the product of density and sound speed) when each environmental change
occurs. This dimensionally reduced field is matched at each range-step so that
inaccuracies caused by changes in density and sound speed are reduced.

THE TEST CASE PROBLEM This test case is an upslope-downslope propagation
problem that is an extension of the Acoustical Society of America's (A SA) penetrable
lossy wedge benchmark problem (Felsen 1990; Jensen and Ferla 1990). This case is
designed to test how well the PE models conserve energy in a strongly
range-dependent environment. The symmetry of the problem is such as to test the PE
models for energy losses (and gains) on the upslope (and downslope) propagation. In
Test Case 2 there are initially three trapped modes that propagate upslope. The depth
at the shallowest point (25 m deep at a range of 3.5 km) was chosen because at that
depth, no trapped modes exist. Thus, 3 trapped modes initially propagate (at range
= 0), are stripped-out such that no trapped modes are propagating at range = 3.5 m,
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CONSERVATION OF ENERGY IN RANGE-DEPENDENT PROPAGATION
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Fig. 2-2.0 Environment for Test Case 2.

and are reestablished in going downslope such that there are again three propagating
modes (at range = 7.0 rn).

Figure 2-2.0 defines the geometry and physical parameters of the problem. Two
moving point (receiver) depths were selected for this test case. The first, at a depth of
20 ai, pases just above the highest point of the ridge (by 5 in). The second receiver
point, at a depth of 150 mn, actually cuts through t;•ridge.

THE REFERENCE SOLUTION The reference solutions for this test case were
generated by Richard B. Evans using his coupled mode model, COUPLE (Evans :983;
1986). These results are shown in Figures 2-2.1 and 2-2.2 and labeled as "Ref.:
COUPLE." The COUPLE model solves the nonhomogeneous Helmholtz equation (for
the acoustic pressure due to a point source nn ., axis) in the 2-D cylindrically
symmetric environment whose radial cross section is shown in Fig. 2-2.0. (Implicit in
this description is the fact that solving the correct partial differential equation with th2
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correct boundary conditions yields the unique solution.) COUPLE has been used to
provide the "correct numerical solution" at an ASA special session devoted to the
benchmark accuracy of ocean acoustic models (Felsen 1990; Jensen and Ferla 1990).

RESULTS AND DISCUSSION Figures 2-2.1 and 2-2.2 indicate that several of the
PE models had difficulty propagating up-slope, especially near the apex (at 3.5 km).
In the region over the apex and down-slope, only two of the PE models were able to
exactly match the reference solutions. (Refer to plots (a) and (b) of Fig. 2-2.1 for the
near surface receiver, and plots (a) and (b) of Fig. 2-2.2 for the deeper receiver.) The
least restricted of the operational PE models, MIPE, compared favorably to the
reference solution 'refer to plot (c) of Fig. 2-2.1 for the near-surface receiver and plot
(c) of Fig. 2-2.2 for the deeper receiver.) The other operational models (NAVY STD PE
and OPT) were constrained to their operational parameters and did not compare as
favorably (refer to plots (d) and (g) of Fig. 2-2.1 and plots (d) and (f) of Fig. 2-2.2).

This Test Case produced another revision to the later version of the Navy Standard PE
model. (Refer to the discussion in Test Case 1 for a review of the first revision.) In
order to handle the shallow-water, sharp-density contrast at the apex of the wedge
bottom (at range = 3.5 kin), the Navy Standard PE model required a "density
transition regior. icngth" of one-half of its usual operational value. This smaller value
is now included as the default in the later version of the Navy Standard PE model. The
plots from NAVY STD PE given in Figs. 2-2.1 and 2-2.2 are from the later version.

A discussion of other observations from Test Case 2 follows:

* The significance of the errors produced by the "violation of conservation of energy"
can be illustrated by comparing Figs. 2.2.1(a) and 2.2.1(j) where the FEPE model with
the "energy conservation fix" is plotted against a version of FEPE without the
correction (labeled as NON EC FEPE). A similar illustration is given in Figs. 2-2.1 (k)
and 2-2.2(k) where the results from the coupled two-way COUPLE model (which does
match both continuity conditions at vertical interfaces) is compared against the
uncoupled one-way version of COUPLE (which matches only one continuity condition
at vertical interfaces).

• In Fig. 2-2.1(j) the TL is too larg* in going upslope and too small in going
downslope, with the greatest inaccuracy occurring at the apex (at Lange = 3.2 kin), but
the errors cancel one another at the base (i.e., at the downslope range of 7.0 km). The
upslope-downslope errors thus tend to cancel such that the reference TL and the
predicted TL actually coincide after 7.0 km. Such complete cancellation of errors can
be expected only in ideally symmetric problems as Test Case 2.

In Figs. 2-2.1(i), and 2-2.2(h), the SACLANT version of IFDPE (referred to here as
.i;DPE SAC) does not have an "energy conservation fix" and as a result it does not
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match the reference solution. The same holds true for the IFDPE results shown in Figs.
2-2.1 (f) and 2--2.2(e).

0 Results from the FEPE, DREP, and DREPS PE models coincide with the reference
solutions for both upper and lower receivers. These PE models use either the reduced
pressure field technique or the two-way PE approach.

* The IFDPE SAC predicts -3 dB more loss at range = 3.5 km than the reference
solution indicates for the near surface receiver.

* The results from the two operationally configured split-step PE models (NAVY STD
PE and OPT) show a significant error in the region around the apex (in the 2.4 to
4.0 km range). The MIPE model seems to "recover" in the downslope region and gives
a reasonable fit to the reference solution. Recall that MIPE and NAVY STD PE
essentially use the same solution techniques, but that the NAVY STD PE model is run in
an operational mode (with fixed transform sizes) while the advanced version of the
MIPE model was used with the best possible choices for parameters and with the
knowledge of an expert who could choose the parameters to suit the physical
situation. Thus, the comparisons of Navy Standard PE and MIPE are a measure of how
well the operational PE model will perform in the field, and how well it might
perform in the hands of a very experienced and knowledgable operator.

0 As might be expected, the results obtained from the IMPPE model (Fig. 2-2.1 (e) and
Fig. 2-2.2(i)) and the IFDPE model (Fig. 2-2.1(0 and Fig. 2-2.2(e)) are identical in
their comparison to the reference solutions for both the upper and the lower receivers.
(Recall that the IMPPE model is just the IFDPE model with an impedance boundary
condition that replaces the customary IFDPE "deep false bottom termination" to the
computational grid).

9 The effect of the impedance on the "energy conservation" can also be seen in Fig. 2-
2.2 where some of the PE models show significant disagreement with the reference
solution after the receiver crosses the interface from water into the sediment.

After Test Case 2 was completed, Ed Chaika of the AEAS program office inquired
about runtime versus accuracy for the R&D PE models, i.e. would it be possible to use
larger range-steps (Ar), larger grid separations (Az), etc., but maintain accuracy such
that the trade-off between runtime and accuracy could be highly favorable. Michael
Collins of NRL graciously agreed to provide an example. During one of the workshop
breaks he ran Test Case 2A on a VAX 8650 computer, adjusted the Ar and Az to
degrade the accuracy, and recorded the CPU runtimes. Column one of Table 2-2
refers to the particular plot shown in Fig. 2-2.3. Columns two and three give the
corresponding Ar and Az for each plot. Column four gives the runtime in seconds.
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Universal criteria for optimum selection of range and depth increments have not been
established. The results shown in Table 2-2 are for a simple, short-range problem.
Long-range propagation in complicated environments may produce entirely different
results. The significance is that some R&D PE models could be used operationally
without significantly reducing accuracy. Trade-offs between computational speed,
portability, and accuracy are of major concern to the Navy and was one of the
motivating factors for this workshop.

Table 2-2. Runtlmes vs. Accuracy Parameters for Test Case 2A using FEPE

Figure Ar (m) Az (m) Runtime (sec)

2-2.3(b) 20 4 3.0

2-2.3(d) 80 16 0.2

SUMMARY The problems caused by not conserving energy (i.e., by not enforcing
both continuity boundary conditions) have been significantly reduced by various
methods incorporated into the PE models. Matching the fields after they have been
reduced by (pc)"12 is one successful method. The two-way PE approach is another
method which has proven successful. However, the difficulty .1•1 --. s and is
inherent in the PE marching method. Trade-offs in accuracy vs. run'; ,L A' be made
such that some PE models can give acceptable accuracy while performing at
operational speed.

FURTHER READINGS IN PART 3 The reduced pressure field technique is
discussed in the paper by Collins. The two-way PE method is discussed in the paper
by Brooke and Thomson. Pertinent discussions on the energy conservation problem in
the PE model can be found in several other papers in Part 3 of these proceedings.

"* Brooke, Gary H., and David J. Thomson, "A Single-Scatter Formalism for
Improving PE Calculations in Range-Dependent Media."

"* Collins, Michael D., "Higher-Order, Energy-Conserving, Two-Way, and Elastic
Parabolic Equations."

"* Holmes, Eleanor S., and Laurie A. Gainey, "The Navy Standard Parabolic Equation

Model, Broadband PE, and PE Workshop II."

"* Jensen, Finn B., "PE Workshop II: Test Problem Solutions."

"• Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE. SlowPE,
YourPE, MiPE: What are the Real Issues?
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TEST CASE 3 Range-Dependent Shear
Wave Propagation

OBJECTIVE Test the ability of PE models to accurately propagate the water-borne
acoustic field over a range-dependent, lossy, ocean bottom with anelastict properties
(i.e., with shear wave speeds and shear wave attenuations).

BACKGROUND Recently, there has been strong interest in extending underwater
acoustic models to include more realistic treatments of the ocean bottom, including
anelastic media. There are very few ocean acoustic PE models that include either
elastic or anelastic propagation. Until recently, those PE models that were applied in
anelastic ocean-bottom regions treated the shear waves as an additional loss
mechanism. There is both reason and experience to suggest that this is a viable
alternative to actually incorporating anelasticity in the PE model. The reasoning goes
as follows: When a water-borne acoustic (compressional) wave penetrates the ocean
bottom, it can be partially converted into shear wave propagation which is then
attenuated. Reverse conversion (ocean-bottom shear waves into water-borne
compressional waves) can be relatively weak. Additionally, interface (Scholte) wave
propagation along the shear-supporting water-bottom interface is evanescent and not
easily detectable at vertical distances from the interface that are beyond a few
wavelengths. All of this is generally true in forward propagation which is the type of
propagation that underwater acoustic PE models are designed to handle. In some cases
ocean acoustic propagation over ocean-bottoms that include shear waves and shear
wave attenuations can be accurately represented as an additional loss factor in PE
models that do not explicitly include shear waves. This, however, has not been
universally verified. Furthermore, the effects of ocean-bottom shear waves on
reverberation (acoustic backscatter) have not been quantified. Since backscattered
acoustic fields are weak in magnitude, the loss due to shear conversion could be a
significant factor.

THE TEST CASE PROBLEM With such motivation and the fortuitous occurrence
that two anelastic PE models had recently been developed, Test Case 3 evolved. Test
Case 3 is designed to test the ability of PE models to include lossy, anelastic media
t The American Geological Institute's Glossary of Geology defines anelasticity as
the effect of attenuation of a seismic wave; it is symbolized by Q. I/Q is the specific
attenuation factor or specific dissipation function; it is the relative energy loss per
cycle.
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effects. It uses the basic geometry of the ASA penetrable, lossy, wedge benchmark
problem (Jensen and Ferla 1990). The only addition is the inclusion of shear wave
speed and shear wave attenuation in the bottom.

The environment for this test case is shown in Fig. 2-3.0. In the water the sound speed
is 1500 m/s, the density is I g/cm3, and there is no attenuation. In the anelastic bottom
the compressional speed is 1700 m/s, the shear speed is 800 m/s, the density is
1.5 g/cm3, and both the compressional wave and shear wave attenuations are 0.5 dB/X.
The frequency is 25 Hz, the fixed point depth (source depth) is 100 m, and the moving
point depths (receiver depths) are 30 m and 150 m.

FREQUENCY = 25 Hz
SOURCE DEPTH = 100 m
RECEIVER DEPTH =30 m, 150 m

P=0

WATER
C =1500 m/sp =1.0 g/cm3

a = 0.0 dB/X
200 m ..w

C

S25 Hz

COPRSSONL SHEAR
C =1700 m/Ls C = 800 MIS

p 1.5 g/cm 3  a = 0.5 dB&
a 0.5 dB0/

I--- 4.0 km

Fig. 2-3.0 Environment for Test Case 3.

THE REFERENCE SOLUTION The reference solution for this problem was
generated by Stanley A. Chin-Bing using the SAFE model (Murphy and Chin-Bing
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1991; Chin-Bing and Murphy 1993a; 1993b). The SAFE model, like the COUPLE
model, solves the nonhomogeneous Helmholtz equation for a 2-D axisymmetric
environment; however, the SAFE model also accurately includes shear waves and
shear wave attenuations. The SAFE model uses the finite-element solution method and
provides accurate numerical predictions for 2-D range-dependent ocean and
ocean-bottom seismoacoustic propagation and scattering. It has been accurately
validated against the SAFARI model in range-independent shear-supporting scenarios
(including Scholte interface wave interference) and against the COUPLE model in
nonshear range-dependent scenarios. The SAFE model can accept any type of starting
field as its initial boundary condition. A point source was used for this test case.
Difficulty in obtaining sufficient computer memory precluded having the result for
Test Case 3A in time for the workshop and for Test Case 3B prior to this report.

RESULTS AND DISCUSSION Figure 2-3.1 shows the reference solution together

with results from eazh of the PE models that were applied to this test case.

The following is noted in regard to Test Case 3:

* There were two PE models that accurately propagated and converted shear wave
energy: the FEPES model developed by Collins and the DREPS model developed by
Brooke. Figure 2-3.1 shows that each of these PE models compares well with the
reference solution and with each other. In Fig. 2-3.1(a) the FEPES model compares
very well with the reference solution (from the SAFE model) and in Fig. 2-3.1 (g) the
DREPS model compares equally well with the reference solution. A direct comparison
between FEPES and DREPS, shown in Fig. 2-3.1 (i), indicates that the only two PE with
shear models give nearly identical results for Test Case 3A. Such agreement among
these three models (i.e., the two PE models and the reference model), with different
solution techniques, gives confidence that the actual numerical solution to Test Case
3A has been obtained. While no reference solution to the deep receiver was provided,
the FEPES and DREPS results for the deep receiver (shown in Figs. 2-3.2(a) and
2-3.2(b), respectively), compare favorably to each other, as is seen in Fig. 2-3.2(i).

e Results from three split-step models (NAVY STD PE, MIPE, and OPT) were also
submitted for this test case. Each of these models treat shear waves as an added loss
mechanism. Thus, if shear wave conversion is a significant factor in this propagation,
treating the conversion just as an added loss would produce results different from that
predicted by a model that accurately propagates anelastic energy. This is especially
true for the deep receiver which is actually in the bottom for a large portion of the
track. For the shallow receiver, MIPE gives a credible match to the reference solution,
as is shown in Fig. 2-3.1(d). In the vicinity where the receiver crosses the water
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sediment interface (-3.4 km) the MIPE curve begins to fall off too rapidly as compared
with FEPES and DREPS. This excessive fall-off is even more evident in Fig. 2-3.2(c)
for the deep receiver. NAVY STD PE seems to have underestimated the amount of loss
that needs to be attributed to the shear mechanism since it shows less loss (in Figs. 2-
3.1(d) and 2-3.2(e) for the shallow and deep receivers, respectively) than the other
models. The OPT model appears to have made better use of the "effective shear loss"
concept in that it gives a reasonable fit (in Fig. 2-3.1 (f)) to the reference solution for
the shallow receiver and a fair fit to the FEPES and DREPS results for the deep receiver
(comparing Fig. 2-3.2(0 to Figs. 2-3.2(a) and 2-3.2(b), respectively).

• The approximation that shear waves can be treated as a simple loss mechanism
breaks down when anelastic propagation becomes a very significant contributing
factor. This is evident in Figure 2-3.2 which shows the results for the deep receiver.

0 In Test Case 2 the "violation of conservation of energy" was due to only one
continuity condition being matched by the marching solution PE models. This
difficulty was resolved by employing an asymptotic correction whereby the marching
acoustic field was divided by (pc)i' 2 when an environmental change occurred. This
energy conserving method was used in the FEPE model (as compared with the NON EC
FE model which is the FEPE model without this adjustment to the field). Another way
of getting an improvement in results was to rotate the coordinate system such that the
incline of the wedge "appeared" to the PE model as a flat, horizontal water-bottom
interface. Then the problem appears as a horizontally stratified scenario and PE
models have been shown to give very good results in such cases. Such an attempt was
made in Test Case 3 to see if any improvement could be obtained by using a rotated
environment; the FEPE ROT model is the FEPE model with the rotated environment and
the FEPES ROT model is the FEPES model with the rotated environment. Comparisons
of FEPE ROT and FEPES ROT with the reference solution (shown in Figs. 2-3.1 (b) and
2-3.1 (c) respectively) indicate that a rotation of the coordinate system does not affect
(improve) the results. FEPE ROT still produces the nonshear, ASA penetrable lossy
wedge benchmark solution and FEPES ROT still produces the FEPES result-these
results are also observed in Figs. 2-3.2(g) and 2-3.2(h), respectively, when compared
to Fig. 2-3.2(a) for the deep receiver in Test Case 2B. All of this suggest that failing
to match both continuity conditions while marching out in range is not the primary
reason for the differences between the shear PE models and the nonshear PE models
in this test case. Rather, the differences can be attributed to not including the shear
wave speeds and attenuations.
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* The results from the IFDPE model are shown in Fig. 2-3.2(h) for the shallow
receiver and in Fig. 2-3.2(e) for the deep receiver. Since IFDPE does not include shear
wave speeds and shear wave attenuations, and Ding Lee did not try to include an
"effective shear loss," the results for the IFDPE model for the shallow and deep
receivers (Figs. 2-3.1(h) and 2-3.2(e), respectively) are the same as those for the
ASA penetrable, lossy, benchmark wedge problem.

SUMMARY Two recently developed PE with shear models have demonstrated a high
degree of accuracy when their results are compared to the reference solution and to
each other. Nonshear PE models have demonstrated that an "effective shear loss" can
be used to obtain an "acceptable" result to Test Case 3. Competing and complicated
physical mechanisms, viz backscatter and nonconservation of energy, were shown not
to be contributing factors in Test Case 3; thus, the results presented are a measure of
how well the PE models can account for shear wave speeds and shear attenuations in a
range-dependent scenario.

FURTHER READINGS IN PART 3 For more in-depth discussions on shear effects
in PE models, refer to the following papers in Part 3 of these proceedings:

"* Collins, Michael D., "Higher-Order, Energy-Conserving, Two-Way, and Elastic
Parabolic Equations."

"* Holmes, Eleanor S., and Laurie A. Gainey, "The Navy Standard Parabolic Equation
Model, Broadband PE, and PE Workshop II."

"* Jensen, Finn B., "PE Workshop II: Test Problem Solutions."

"* Lee, Ding, Martin H. Schultz, William L. Siegmann, Donald F. St. Mary, and
George Botseas, "Applications of the IFD Model."

"* Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE, SlowPE,
YourPE, MiPE: What are the Real Issues?"

"* Papadakis, John S., "Impedance Bottom Boundary Conditions for the
Parabolic-Type Approximations in Underwater Acoustics."
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TEST CASE 4 Backscatterrom a
Wave guide Discontinuity

OBJECTIVE Test the ability of the different PE models to accurately calculate the
backscattered acoustic field.

BACKGROUND In their general configurations PE models propagate the field only in
one direction (forward) and thus do not include backscatter. However, PE models can
be used to account for backscatter in a straightforward fashion. One method is to
propagate the field to the scatterer via the PE model, modify the field by the
appropriate reflection coefficient, and propagate the modified (scattered) field in the
backward direction. The two resulting fields could then be added together if the total
cw field was desired. In most cases, it is the back-propagated field alone that is
sought.

FREQUENCY = 25 Hz
SOURCE DEPTH = 100 m
RECEIVER DEPTH =95 m, 150 m

P=0
WATER

C =1500 m/s
p = 1.0 g/cm 3  10m

cw a = 0.0 dB/X
S25 Hz

200 m
S~BOTTOM (FLUID)

4-3.0 km C =1700 m/sp=. g/cm

(x= 0.5 dB/A

5.0 km

Fig. 2-4.0 Environment for Test Case 4.
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THE TEST CASE PROBLEM The environment to Test Case 4 is shown in Fig. 2-4.0.
In the water column the sound speed is 1500 m/s, the density is I g/cm3 , and there is
no attenuation. In the fluid bottom the sound speed is 1700 m/s, the density is
1.5 g/cm3 , and the attenuation is 0.5 dB/X. The frequency of the point source is 25 Hz,
the fixed point depth (source depth) is 100 m, and the moving point depths (receiver
depths) are 95 m and 150 m.

THE REFERENCE SOLUTION The reference solution was produced by the
COUPLE model. As discussed in Test Case 2, the COUPLE model solves the
nonhomogeneous Helmholtz equation (for the acoustic pressure due to a point source
on the axis) in the 2-D cylindrically symmetric environment whose radial cross
section is shown in Fig. 2-4.0.

RESULTS AND DISCUSSION The reference solution and the PE models' results are
shown for the shallow receiver in Fig. 2-4.2 and for the deep receiver in Fig. 2-4.3.

When backscatter is present the COUPLE model solution includes the backscattered
and multiple scattered components. This is generally not the case for the PE models.
Careful and thoughtful comparisons must be made between the reference solution and
the PE solutions. The following discussion with the illustrations given in Fig. 2-4.1
should help to grasp the fundamental differences.

Figure 2-4.1 shows schematic diagrams depicting the outgoing acoustic field from a
point source located on the vertical axis. The resulting backscattered field comes from
the step discontinuity in the seafloor. Figure 2-4.1(a) shows the scenario that would
apply to a PE model and Fig. 2-4.1 (b) shows the scenario that would apply to 2-D
axisymmetric models such as COUPLE. In Fig. 2-4. 1(a) the PE model propagates the
uncoupled outgoing field to the step region in the seafloor. Backscatter is calculated
based on the single scatter approximation that locally matches pressure and velocity.
The scattered field from the step seafloor is then back-propagated by the PE model
(often using reciprocity). These are two separate applications of the PE model and
each application produces a one-way propagating field.

A similar scenario would be modeled differently by 2-D axisymmetric acoustic and
seismoacoustic models, such as COUPLE and SAFE. These models solve the
nonhomogeneous Helmholtz equation with correct boundary conditions. They
globally match pressure and velocity and consequently allow for multiple scattering.
The outgoing, backscattered, and multiple scattered fields are coupled together and
cannot be readily separated. These models actually model the scenario shown in Fig.
2-4. 1(b) so that the 2-D backscattered fields at all azimuthal angles are "focussed"
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POINT SOURCE
ON VERTICAL AXIS

UTGOING ACOUSTIC FIELD PROPAGATED

tBY PE MODEL

THE 2-D SCENARIO
AS "SEEN" BY THE PE MODEL BACKSCATTERED FIELD

BACK-PROPAGATED BY PE MODEL

(a)

2-D AXISYMMETRIC MODEL GEOMETRY
/7.,.d•_POINT SOURCE
------------------. ON VERTICAL AXIS

OUTGOING

(b)
Fig. 2-4.1 2-D Axisymmetric Environment. Schematic diagrams depicting the outgoing
acoustic field from a point source (located on the vertical axis) and the resulting
backscattered field from the step discontinuity in the seafloor-as modeled by a PE
model (shown In (a)), and by a 2-D axisymmetric model such as COUPLE (shown In (b)).
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onto the vertical axis located at the origin. (There are ways to obviate this situation
and obtain one-way fields (outgoing and incoming waves) using these models. Note
however, that in a range-dependent case the one-way "field" or one-way "wave"
obtained from models such as COUPLE and SAFE does not necessarily correspond to
the total one-way propagating energy-a point better left to the literature
(Sluijter 1970).)

It should be noted that the 2-D axisymmetric geometry shown in Fig. 2-4.1(b) is not
the physical situation that usually exists in underwater acoustics; the situation that
does generally occur is represented by Fig. 2-4.1(a). Since PE models give an
uncoupled, one-way range-dependent solution, they can straightforwardly be used to
solve the physical situations represented in Fig. 2-4.1.

0 Collins used his FEPE model to model a horizontal line-source thus avoiding any
confusion caused by the 2-D axisymmetric interpretation of the test problem. He also
provided the corresponding reference solution using the COUPLE model with a
horizontal line-source (designated as "COUPLE-L" in Fig. 2-4.2). (The remaining
participants used the point source assumption. Thus, Collins' results are
approximately 30 dB above their reference solutions since the line-source assumption
does not reproduce the cylindrical spreading exhibited in the 2-D axisymmetric
point-source COUPLE model.)

* Jensen provided one-way reference results using a point source and the
single-scatter approximation in the COUPLE model. (All designations "(out)" refer to
the field propagating out-away from the source; all designations "(back)" refer to the
backscattered field propagating back-toward the source. Thus, the Jensen plot of the
one-way field propagating out (from the point source) is designated as "COUPLE SAC
(out)" and the field propagating back (toward the source) is designated as "COUPLE
SAC (back)." "COUPLE SAC (two-way)" refers to the total field--coupled outgoing and
backscattered fields-as calculated by Jensen using the COUPLE model.)

* The DREP PE solution, which uses the single scatter approximation, matches the
reference solution, even in the calculation of the incoming waves. The single-scatter
approximation is apparently a simple way to eliminate the standing waves in the basin
which occur because of multiple scattering from the 2-D axisymmetric step
discontinuity.

* The MIPE operational PE model also matches the reference solution, indicating that
split-step PE models can also be used to accurately predict the backscattered field.
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* The NAVY STD PE model is not operationally configured to include backscatter.
Thus, the NAVY STD PE results shown for Test Case 4 are the result of ingenious
application by its custodians.

* Because of the various ways of computing and displaying the backscattered fields
and the total fields, a review of the appropriate papers given in Part 3 is highly
recommended before attempting to compare results given in Figs. 2-4.2 and 2-4.3 for
the various PE models.

SUMMARY Prior to this workshop the ocean acoustics PE models were virtually
never used for backscatter calculations. However, the results shown in Test Case 4
indicate that the PE models can be used to provide accurate calculations of
backscatter.

The methods employed to obtain these accurate backscatter calculations were
originated by the expert users rather than being a feature included in the PE models-
thus, the average user can not expect to simply run a PE model and obtain backscatter
calculations. The technique employed by the workshop contributors could be
described as a "multiple forward propagation, localized single backscatter" approach.
It fits well into the PE marching scheme and will undoubtedly become a part of future
PE model development.

FURTHER READINGS IN PART 3 For more in-depth discussions on how to include
backscatter effects into PE models, refer to the following papers in Part 3 of these
proceedings:

"* Brooke, Gary H., and David J. Thomson, "A Single-Scatter Formalism for
Improving PE Calculations in Range-Dependent Media."

"* Collins, Michael D., "Higher-Order, Energy-Conserving, Two-Way, and Elastic
Parabolic Equations."

"* Holmes, Eleanor S., and Laurie A. Gainey, "The Navy Standard Parabolic Equation
Model, Broadband PE, and PE Workshop II."

"* Jensen, Finn B., "PE Workshop II: Test Problem Solutions."

"* Lee, Ding, Martin H. Schultz, William L. Siegmann, Donald F. St. Mary, and
George Botseas, "Applications of the IFD Model."

"• Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE, SlowPE,
YourPE, MiPE: What are the Real Issues?"
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TEST CASE 5 Propagation in a Constantly
Changing Environment

OBJE CT 'ff. Accurately propagate the acoustic field through a region of constantly
changing environmental parameters.

BACKGROUND This test case is designed to test the ability of underwater PE
propagation models (and model users) in handling a water-borne sound speed that
varies linearly in range while the bathymetry and sediment layer depths also vary
linearly in range. Variations in the water-borne sound speed over a 2-km range (from
0.5 km to 2.5 km) rise linearly from 1500 m/s to 1540 m/s (i.e., a slope of +1.145760)
while variations in the ocean-bottom depth and sediment layer thickness fall linearly
from 200 m to 400 m, and 400 m to 600 in, respectively, over the same 2-km range
(i.e., a slope of -5.710590 for each). Thus the rate of variation is different between the
continually changing sound speeds and the corresponding continually changing
bathymetry and sediment depths.

Ideally any PE model would be given a new sound speed profile and precise
bathymetric depth for each range step (Ar) it makes, and it would take small enough
steps so as to properly include the linearly varying effects of sound speed and
bathymetry; the model would also use a grid sufficiently small in depth (i.e., the
distance (Az) between nodes) so as to properly include the linearly varying effects.

This test case required some ingenuity on the part of some of the model users since
inclusion of the continuously changing environment into their models was not a trivial
task-most, if not all, of the basic R&D PE models do not access data bases or data
base generators; the user generally enters data into the model via a user-created input
file. This input method is usually sufficient for the study of research oriented
problems where the choice of a pertinent, but simple, environment allows isolation
and understanding of the physical mechanisms. However, in a realistic ocean
acoustics scenario, the situation posed in Test Case 5 is more likely to be encountered.

THE TEST CASE PROBLEM The environmental parameters for Test Case 5 are
given in Fig. 2-5.0. The sound speeds, bathymetries, and sediment layer depths are
constant in the regions before and after the linearly varying region. The total ocean
bottom consists of two layers: the first bottom layer (i.e., the sediment) is a constant
200 mn thick and parallels the contour of the water/sediment interface; the second
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bottom layer (i.e., the subbottom) is a homogeneous fluid half-space. The pertinent
physical parameters of these two bottom layers are constant throughout the entire
range of 10 km and are as follows: the sediment layer sound speed is 1700 m/s, the
density is 1.5 g/cm3, and the attenuation is 0.5 dB/X; the subbottom fluid half-space
has a sound speed of 1900 m/s, the density is 3.0 g/cm3 , and the attenuation is 0.1 dB/X.
The sound speed structure in the water is a constant 1500 m/s out to a range of 0.5 km
and remains a constant 1540 m/s from 2.5 km out to a range of 10.0 km. Throughout
the 10 km range the density of the water is 1 g/cm 3 with no attenuation. The frequency
is 25 Hz, the fixed point depth (source depth) is 100 m, and the moving point depths
(receiver depths) are 30 m, 150 m and 250 m.

USEDMENT
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Fig. 2-5.0 Environment for Test Case 5.
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THE REFERENCE SOLUTION Test Case 5 proved to be a formidable challenge to
both the contributors and the PE Workshop II organizing committee. The COUPLE
model solves only a two-layer problem and therefore could not be used to obtain a
reference solution. There are some finite-element models (including the SAFE model)
that can adjust the nodes on its grid to lie along the constantly varying bathymetries
and include different environmental and acoustic parameter values at each of its
nodes. The entry of such a volume of data is not trivial for either the PE models or the
finite-element model that was to be used to provide the reference solution. Time
constraints prior to and following the workshop prevented the generation and
validation of a reference solution.

RESULTS AND DISCUSSION Model results for this test case were submitted from
three of the finite-difference PE models (DREP, IFDPE, and IMPPE models) and three of
the split-step PE models (NAVY STD PE, MIPE, and OPT). Results for the three receiver
depths, 30 m, 150 m, and 250 m are shown in Figs. 2-5.1, 2-5.2, and 2-5.3,
respectively.

A visual comparison of the plots in Figs. 2-5.1, 2-5.2, and 2-5.3 indicate that some
differences exist between the PE models' predictions, in particular between the
collective predictions of the R&D models and the operational PE models. This could
be due to a number of reasons:

* The choice of optimum grid size (Ar, Az) is important so that the sloping
water-sediment and sediment-bottom interfaces are adequately represented. In the
case of the MIPE model, the workshop contributor refined the PE grid until he had
achieved a stable solution. He then maintained that grid size while he varied the
"Emixing lengths" that are used to smoothly join the index of refraction and density
discontinuities. He used this approach on all of the test cases. But, in the case of Test
Cases 5 and 6, he wrote a special code to handle the extra layers and additional mixing
length. These additions apparently were beneficial judging from the similarity in the
MIPE results with the R&D models' results.

0 As noted, the selection of the mixing length is very important in the split-step PE
models. The NAVY STD PE and OPT models were run under operational conditions and
did not have the extra layers and mixing length that the MIPE model had.

* The method of interpolating between the sound speed profiles can be very
important. The NAVY STD PE model was given new interpolated data at each range
step taken. This interpolated data was generated by a program that performs triangular
interpolation between profiles. These interpolated profiles were then used in the Navy
Standard PE model's alternate sound speed file to provide updated data at each range
step taken by the model. This is different from the way the OPTAMAS system
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interpolates between sound speed profiles. OPT uses a linear interpolation of sound
speed profiles, both in range and depth. This has the advantage of no discontinuities in
the sound speed profile, but is not always the best way to interpolate.

0 Many operational PE models use data obtained from a massive data base and data
base generator; the PE model then automatically accesses this data base according to
predetermined rules that make trade-offs between maximum grid (or transform) size,
required accuracy, runtime, etc. This allows ease of application and operation but
suffers from the rigid methodology (constraints) imposed on the operational models'
access to new data. Thus, in a constantly changing environment such as that defined in
Test Case 5, operational constraints on the PE model can limit the amount of data
allowed to the PE model, resulting in significant errors in the model's predictions.

• R&D PE models usually have no data bases from which to extract environmental
data. The data files used by these PE models are generally created by the user,
employing a "hands-on" approach. Therefore, continual updating of data requires that
the user write a data generator for his model or build a massive data file. There is
obvious reluctance to do either, and this is reflected in the fact that, although this was
the one test case problem that all of the participants might have solved, only about
half of the workshop participants chose to work this problem.

SUMMARY Accurate physics, stable numerical algorithms, and fast computational
speed do not guarantee reliable PE model predictions. Accurate environmental data
bases must exist, and a methodology established for efficiently transferring and using
this data in the model so that the environment is neither undersampled (which will
result in erroneous predictions) or oversampled (which will result in wasted
computational resources).
The results from those contributors that did work Test Case 5 are in fair agreement.
The Navy Standard PE model seems to have deviated the most in its predictions and
the MIPE model tends to follow the trend set by the R&D models. Apparently a major
item for discussion in the near future will be the high resolution of the environmental
data required by the acoustic models, and the consequences (expressed quantitatively)
of not having such high resolution environmental data.

FURTHER READINGS IN PART 3 The following two papers on the operational
models discuss some of the parameters sizes used in this test case:
"* Holmes, Eleanor S., and Laurie A. Gainey, "The Navy Standard Parabolic Equation

Model, Broadband PE, and PE Workshop II."

"• Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE, SlowPE,
YourPE, MiPE: What are the Real Issues?"
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TEST CASE 6 Underwater Acoustic Model
Predictions vs. Measured Field Data

OBJECTIVE Compare PE model predictions to measured ocean acoustic data, given
that a detailed and accurate set of environmental and geoacoustic parameters are
known along the experiment track.

BACKGROUND In many ocean acoustics experiments, excellent acoustic data is
taken but the knowledge of the ocean environment at the time the data is taken may be
inadequate. The acoustic model user must then resort to historical data bases to obtain
the ocean environmental parameters (sound speed profiles as a function of depth and
range) and ocean-bottom environmental parameters (compressional wave speed
and attenuation, shear wave speed and attenuation, density, all as a function of
depth and range). The historical data bases can provide sound speed profiles in the
water column that are, at best, only typical of that region of the worlds oceans. Ocean
bottom properties obtained from historical data bases are usually less typical of the
region, representing only an interpolation (or guess) based on sparse measurements
made "nearby" the area of interest. Thus, the PE Workshop II was fortunate to have a
comprehensive acoustic-environmental data set to present to the contributors.

THE TEST CASE PROBLEM Test Case 6 consists of a set of experimental acoustic
measurements taken by Hassan Ali of NRL (Fisher et al. 1988; 1989) off the coast of
Oregon. The experiment track ran from the shallow coastal waters (-200 m in depth)
outward (100 km in range) into much deeper water (-4 km in depth). An
accompanying set of environmental data in the experiment site was compiled by Pete
Fleischer of NRL. Several information sources were used in obtaining the
environmental data including data bases compiled by the ONR Acoustic
Reverberation Special Research Program. Fortuitously, a seismic survey had been
made along a track parallel to and within 30 miles of the acoustic experiment track.
Thus, these complimentary sets of acoustic and environmental data represent a most
comprehensive acoustic-environmental data set.

A tabular set of the environmental inputs used for this test case is included in Part I,
Appendix A. Figure 2-6.0 shows the depth-varying, range-varying bathymetry and
ocean bottom strata. The acoustic experimental parameters were as follows: frequency
= 15 Hz; fixed point receiver depths = 88 m, 112 m, and 148 m; moving point source
depth = 30 m; range of calculation = 0 km to 100 km. This test case is most efficiently
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modeled by employing reciprocity and treating the fixed point as the "source"
position and the moving point as the "receiver" position.

THE REFERENCE SOLUTION The reference solution used for this test case was
measured acoustic data taken along a track perpendicular to the coast line and
extending from a shallow-water region (-200 m) to a deep-water region (>2,000 in).
In this ocean acoustic experiment a vertical hydrophone array was bottom-moored in
the shallow-water region. A tow ship sailed toward the deep-water region while
dragging a 15-Hz cw acoustic source at a depth of 30 m below the sea surface.
Acoustic signals received at the hydrophone array were processed for the
hydrophones located at depths of 88 m, 112 in, and 148 m.

RESULTS AND DISCUSSION Figures 2-6.1, 2-6.2, and 2-6.3 give the comparisons
between the acoustic experiment data and the various PE models' predictions. Test
Cases 6A, 6B, and 6C refer to reciprocity source depths of 88 m, 112 in, and 148 in,
respectively. In the comparisons made during the workshop, all of the models'
predictions for each case were too high, i.e., the predictions gave higher transmission
loss than the measured data.

An immediate observation by the workshop contributors was that the poor comparison
between data and model predictions was due to either an error in the data (or its
processing) or an error in the environmental data. Jensen provided a parameter study
of how an error in the compressional wave attenuation could account for the poor
comparisons. This is shown in Figs. 2-6.2(f) through 2-6.2(i).

The preponderance of evidence (up to this test case, the PE models had shown
remarkable ability to include all pertinent physical mechanisms; the acoustic-
environmental data was comprehensive, leaving little or no room for guessing at
parameters; all of the PE models gave approximately the same predictions, and these
predictions were uniformly too high) convinced Hassan Ali to have the data
reprocessed. It is important to point out that this was the third processing of some of
this data. A year earlier, poor comparisons between the data and model predictions
had led the experimenters to have selected data processed a second time. The second
processing produced no significant change in the values of the selected data. This
third processing revealed an error in the processing parameters. Comparisons between
the PE models' predictions and the thrice-processed experimental data are shown in
Figs. 2-6.1, 2-6.2, and 2-6.3 with the reference data labeled as "Corrected Data."

SUMMARY Test Case 6 illustrates a recent trend in ocean data-model comparisons.
The PE models have become so accurate that a poor comparison between model
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prediction and experimental data led to the questioning of the accuracy of the data. A
decade ago, when the first PE Workshop was held, no model's prediction would have
been seriously believed if it disagreed with the data.

FURTHER READINGS IN PART 3 Papers in Part 3 that discuss Test Case 6 are:

"* Holmes, Eleanor S., and Laurie A. Gainey, "The Navy Standard Parabolic Equation
Model, Broadband PE, and PE Workshop II."

"* Jensen, Finn B., "PE Workshop II: Test Problem Solutions."

"• Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE, SlowPE,
YourPE, MiPE: What are the Real Issues?"
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TEST CASE 7 Long-Range Propagation in a
Leaky Surface Duct

OBJECTIVE Explain why some wide-angle split-step PE models, when applied to
long-range propagation in a leaky surface duct, overestimate the TL.

BACKGROUND This test case problem was submitted by Finn Jensen. He had
observed that some (but not all) wide-angle split-step PE models using the Thomson-
Chapman wide-angle approach will overestimate transmission loss (TL) by as much
as 20 dB. This overestimation occurs when the PE model is applied to long-range
propagation in a leaky surface duct overlying a strong upward refracting sound speed
profile, such as the one shown in Fig. 2-7.0.

The error in TL is not present when the standard narrow-angle approximation is used
in the split-step PE model. And, the difficulty has not been observed in wide-angle
PE models that use finite-difference or finite-element solution techniques; these PE
models use either a series expansion or a higher-order Pade approximation to the
square root operator, i.e., they do not use the Thomson-Chapman approximation.

THE TEST CASE PROBLEM The environmental parameters of the problem are
given in Fig. 2-7.0. The source frequency is 80 Hz, the source depth is 25 m, and the
receiver depth is 100 m. Thus, both the source and the receiver are located in the
250-m-deep surface duct. The bottom is a range-independent, lossy fluid half-space,
beginning at a depth of 4 km.

There are 78 propagating modes in the water waveguide, one of which is trapped in
the surface duct. The first convergence zone (CZ) occurs at -50 km in range.

THE REFERENCE SOLUTION The SNAP normal mode model (Jensen and Ferla
1979) was used by Jensen to obtain a reference solution. Since the environment in this
test case is range independent, and over a long range (>100 km), a normal mode
model should provide an accurate reference solution. In Fig. 2-7.1 the results from the
SNAP model are labeled "SNAP SAC."

RESULTS AND DISCUSSION The results for Test Case 7 are shown in the 12 plots
comprising Fig. 2-7.1. Plots (a) through (e) were provided by Finn Jensen. They
clearly illustrate the difficulty. In plot (a) the Thomson-Chapman (T-C) wide-angle
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option is used in the split-step PE model (PAREQ) and labeled as "T-C PE SAC." It
disagrees with the reference solution by as much as 20 dB at ranges between 60 km
and 100 km. The same PE model, PAREQ, using the Standard PE (std PE)
narrow-angle option and labeled as "PAREQ SAC std PE" in plot (c) does not show any
difference from the reference solution. The only difference between plots (a) and (c)
are in the choices of the T-C wide-angle option vs. the std PE narrow-angle option.
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Fig. 2-7.0 Environment for Test Case 7.

Jensen also used the T-C wide-angle option with another split-step PE model, LOG PE
(Berman et al. 1989), labeled as "LOG PE SAC" in plot (d) of Fig. 2-7.1. For
range-independent environments, the "rays" associated with LOG PE are identical to
those of the Helmholtz equation; thus, in this range-independent problem, the results
from LOG PE should be the same as the normal mode reference solution. Plot (d)
shows that the LOG PE does give a result closer to the reference solution, but still in
disagreement by as much as 10 dB.
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Jensen established that the disagreement was due to a phasing error associated with
the surface ducted propagation and the leaky deep-diving propagation. He was able to
show that the same disagreement can be obtained with the SNAP model if the surface
duct sound speed is varied by just 0.5 mis. This slight variation in the surface duct
sound speed produced the results labeled "SNAP SAC mod surf SVP" in plot (b) of
Fig. 2-7.1.

Finally, Jensen showed that the problem does not occur in some of the other
well-known wide-angle approximations. Results from using the Claerbout wide-angle
approximation in the implicit finite-difference PE model, IFD PE, (labeled as "IFD PE
SAC Claerbout" in plot (e)) does not show any difference from the reference solution.

The Navy Standard PE model uses both the T-C wide-angle approximation and the
split-step method. And, it is also susceptible to this problem as is shown in plot (f) of
Fig. 2-7.1. In plot (f), the NRL version of the Navy Standard PE model was used with
the T-C wide-angle option. Its results show too little loss in transmission in the 60 km
to 100 km range as compared with the reference solution. This is in contrast with
results shown by the other split-step PE models in plots (a) and (d), where the loss in
transmission was too great when compared with the reference solution.

Plots (g), (h), and (i) of Fig. 2-7.1 are from the results of Lan Nghiem-Phu, Smith,
and Tappert using the University of Miami's version of split-step PE, labeled "MIPE"
in the plots. They show, in plot (h), the difference between the reference solution and
the T-C wide-angle approximation using the MIPE model; and, in plot (i), the
agreement between the reference solution and the standard PE narrow-angle
approximation using the MIPE model. In each case they used the same reference sound
speed, CO = 1500 m/s. By changing to a slightly different sound speed, C. = 1482 m/s,
they are able to use the T-C wide-angle approximation in the MIPE model and get the
same result as the reference solution. This is shown in plot (g).

The results presented by Lan Nghiem-Phu, Smith, and Tappert are highly significant,
in that their investigations show that the correct solution can be obtained with the T-C
wide-angle approximation for only a "very narrow spectrum of reference sound speed,
Co ." They suggest that the problem be solved by using a PE derived from a "Co
insensitive equation." Such a formulation exits in their UMPE model. Results from the
UMPE model for this test case are given in their paper in Part 3 of these proceedings.
Its result is identical to that shown in plot (g) of Fig. 2-7.1, and thus allows the T-C
wide-angle approximation to produce correct results without having to select a
"perfect" Co.

PE Workshop II 113



PE Workshop H: Part 2 - Test Case Results

Plots (j), (k), and (1) of Fig. 2-7.1 are the results from Thomson and Brooke. They
confirm the findings previously discussed:

* PE models that do not use the T-C wide-angle approximation apparently avoid the
difficulties illustrated by Test Case 7. This is shown in plot (j) where the
finite-difference PE model labeled "DREPS" shows agreement with the reference
solution.

0 Split-step PE models that use the standard PE narrow-angle approximation also
avoid the difficulties illustrated by Test Case 7. This is shown in plot (k) where the
Thomson split-step PE model using the standard PE narrow-angle approximation
gives the same result (labeled "DREP std PE" in plot (k)) as the reference solution.

• With the correct choice of CO the split-step PE models using the T-C wide-angle
approximation can get the correct results. This is shown in plot (1) for the Thomson
split-step PE model with the T-C wide-angle approximation (i.e., the curve labeled
"DREP T-C PE"). In this plot the correct CO has been used.

SUMMARY This seemingly benign long-range, range-independent problem presented
a supreme challenge to the Thomson-Chapman wide-angle approximation. The
difficulty occurs in the choice of the reference sound speed, which in turn determines
the phase calculated by the split-step PE model. In Test Case 7 the single trapped
mode that is propagating in the surface duct is a leaky mode, which continually loses
energy into the region below the duct. The strong upward refracting sound speed
profile of this lower region refracts this energy back into the surface duct, thus
causing interferences. A small error in the phase calculation by the PE model can
result in a large (-20 dB) error downrange (beyond the first CZ, i.e., at ranges greater
than 50 kin). That this large disagreement is due to phase errors can be inferred from
plot (a) of Fig. 2-7.1: the split-step PE model with the Thomson-Chapman
wide-angle approximation greatly disagrees with the reference solution between the
first and second CZ, but "miraculously" recovers so that it is in good agreement with
the reference solution at the third CZ. Such recovery would not likely occur if there
were errors in the magnitude of the propagated field.

The range of values for a correct choice of CO is disturbingly small and the selection
criterion essentially one of trial-and-error, i.e., the only rationale for the choice of a
correct CO is that it works. This gives strong impetuous in the split-step PE modeling
community to further the development of a C. insensitive split-step PE model.

Presumably there are some terms in other wide-angle approximations (e.g.,
Claerbout's approximation or higher order Pad6 approximations) that are missing in
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the Thomson-Chapman approximation. This would explain why only the Thomson-
Chapman approximation has the difficulty illustrated by Test Case 7. The precise
reason is as yet unknown. Perhaps a decade from now this explanation will be just
another successful step taken as PE model development marches forward, and
documented by the PE Workshop III in the year 2002.

FURTHER READINGS IN PART 3 Two papers in Part 3 of these proceedings
contain a very detailed discussion of the problems associated with the Thomson-
Chapman wide-angle approximation in the split-step PE model. To fully grasp the
subtle difficulties that this test case presents, the following two papers must be read:

"* Jensen, Finn B., "PE Workshop II: Test Problem Solutions."

"* Nghiem-Phu, Lan, Kevin B. Smith, and Fred D. Tappert, "FastPE, SlowPE,
YourPE, MiPE: What are the Real Issues?"
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PART 3 CONTRIBUTED PAPERS

Editors' Note: Part 3 of the proceedings contains, in first-author
alphabetical order, the contributed papers from the workshop participants.
It is a valuable adjunct to the results presented in Part 2. These papers
contain the theoretical framework associated with a particular PE model,
in-depth discussions of results, and the particulars of how the model was
applied to a specific test case problem. In addition, the papers given in
Part 3 provide the comprehensive list of references associated with a
particular PE model. In some cases, the papers represent the initial results
of a new model development or application, e.g., the backscatter capability
of the PE model.

The PE Workshop 11 was organized with the philosophy that the
participants have as much freedom as possible to present and discuss their
results and ideas. In keeping with this spirit, the contributed papers that
appear in Part 3 are unedited. They faithfully represent the contribution(s)
by their author(s).
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A Single-Scatter Formalism for Improving PE
Calculations in Range-Dependent Media

Gary H. Brooke and David J. Thomson
Defence Research Establishment Pacific
FMO Victoria, BC Canada VOS 1BO

ABSTRACT

A single-scatter formalism for improving PE calculations in range-dependent acoustic
media is described. The medium is sub-divided into range-independent sections in which
the total field is expressed as forward and backward propagating components. At the
vertical interfaces between sections, appropriate boundary conditions are applied that (i)
approximate continuity of pressure and horizontal displacement and (ii) enable individual
forward and backward scattered components to be computed. A single-scatter
approximation, in conjunction with finite-difference PE approximations, allows the
scattered field components in each section to be obtained by solving one or more
tridiagonal systems of equations. Two different implementations for heterogeneous
waveguides are described. The first algorithm, based on a wide angle PE algorithm for
media with continuously varying material parameters, requires a single tridiagonal matrix
system to be solved at each vertical interface. The second algorithm, based on an acoustic
PE for media comprised of distinct horizontal homogeneous layers, requires at least two
tridiagonal systems to be solved at each vertical interface. Numerical results are computed
for the ASA Benchmark Wedge problem and demonstrate that the algorithms yield
accuracies in the forward direction which compare favorably with that obtained using two-
way coupled modes.

1. INTRODUCTION

Practical applications for acoustic propagation algorithms generally involve range-
dependent media. The parabolic equation (PE) model has been used extensively in range-
dependent problems because it maintains computational efficiency by incorporating a
simple range updating procedure into its marching algorithm (i.e. the medium is allowed to
change at each range step).

Recently, some PE models have been shown to be inaccurate when applied to
configurations involving range dependent bathymetry. Specifically, comparisons with full
spectrum (two-way) coupled mode results for the ASA Benchmark Wedge problem [11
have demonstrated that forward (one-way) modelling with the PE can be inaccurate even
in cases where backscatter is considered to be negligible (i.e. the benchmark wedge angle
is only 2.86°). Subsequently, an investigation by Porter, Jensen and Ferla [21 showed that
forward modelling of the acoustic pressure field, in general, does not conserve energy for
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lossless range dependent problems when range updating is used. In their study, the authors
examined deficiencies associated with the range-updating procedure by examining an
energy-conserving asymptotic (WKB) solution for weakly range-dependent media.
Essentially, it was shown that a forward model, such as the PE, is not capable of satisfying
totally the boundary conditions in the range direction (i.e. at the vertical interfaces
introduced by range updating). A judicious choice of field variable in the analysis,
however, was shown to improve the energy conservation capability of the one-way
algorithms providing there was negligible backscatter. More importantly, the authors
demonstrated that energy conserving and, hence, more accurate solutions were obtained by
using a single-scatter version of two-way coupled modes in which all boundary conditions
at each vertical interface were satisfied (within the context of single scattering).

This paper addresses the issue of energy conservation as it pertains to accurate PE model
calculations for range-dependent media. It is demonstrated that PE models can be adapted
to a two-way single-scatter formalism which incorporates backscattered fields and is,
therefore, capable of preserving, approximately, continuity of both pressure and horizontal
displacement in the range direction. As such, the two-way PE algorithms so derived are
very similar in methodology to the single scatter coupled mode algorithm mentioned above.
For example, both algorithms rely on the fact that the medium can be subdivided into range-
independent sections separated by vertical interfaces. Moreover, at each vertical interface,
where the medium changes abruptly, both algorithms allow coupling between forward and
backward propagating energy. To date, this approach has been incorporated into two
different finite-difference acoustic PE algorithms for heterogeneous media namely (i) the
Thomson PE (DJTPE [31) and (ii) the Brooke PE (GHBPE: an acoustic PE based on the
Elastic-PE algorithm [4]). Two different PE algorithms were chosen for analysis because
they differ fundamentally in the manner in which they discretize in the depth coordinate.
DJTPE treats the medium as being continuous in depth, whereas, GHBPE treats the
medium as being made up of distinct homogeneous layers. By comparing with solutions
obtained by two-way coupled modes, both algorithms yield accurate results for the forward
propagating energy in the ASA Benchmark Wedge problem. It should be noted that
accurate solutions have also been obtained for this problem using an "energy-conserving"
PE which propagates reduced pressure [5]. The latter PE algorithm, however, is only
energy conserving when the backscatter is indeed negligible. The two-way PE models
developed in this paper incorporate backscatter directly into the model and, therefore, are
capable of conserving energy (in principle, at least) for a wider class of problems.

2. THEORY

The theory underlying two-way single-scatter PE propagation models for range-dependent
media is outlined in this section. The approach taken here follows closely that used for
coupled modes. That is, the range-dependent waveguide is subdivided into range-
independent sections as illustrated for an idealized ocean in Figure 1. These sections are
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separated by vertical interfaces where the medium changes abruptly. Within each range-
independent section, the representation of forward and backward propagating fields for a
uniform waveguide apply. At the vertical interfaces, scattering occurs which couples the
forward and the backward propagating fields. Solution for scattered components is
achieved by enforcing continuity of pressure and horizontal displacement at each vertical
interface. A single-scatter approximation is made in which the multiple interaction of the
backscattered fields between discontinuities is neglected.

Water P P+"
S'I

Pj. c•c•'----

........................

I I

r=r0.1  r=r1

Figure 1. Range-dependent waveguide representation.

2.1 Range-Independent Waveguide Sections

Consider the range-independent waveguide shown in Figure 2. The medium is assumed to
be continuously heterogeneous. That is, it consists of a single range-independent fluid layer
with depth-dependent (but continuous) sound speed and density representative of an ideal
ocean environment-a water column over a sediment bottom. It is further assumed that the
sediment bottom is terminated at depth by a perfectly reflecting surface. This latter
assumption is made based on a computational requirement associated with the PE
method-the discretization grid is of finite extent. Of course, it is implied that an absorbing
region deep within the sediment is included to minimize reflections from the fictitious
boundary. The above representation of the waveguide (i.e. no sharp internal layer
boundaries) allows a straightforward discretization scheme to be employed in the
associated PE algorithm (DJTPE). A different PE algorithm with a less straightforward
discretization scheme (GHBPE) is obtained by allowing both the sound speed and the
density to be discontinuous at the water-sediment interface. For simplicity, the
heterogenous representation of the medium is used in the following derivation. The
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corresponding analysis for layered media can be obtained simply by treating each layer to
be homogeneous (with constant material parameters) and by satisfying the boundary
conditions at all of the internal interfaces.

p-O' r

....:..c.* ....

............. ~ 59,

Perfect reflector
Figure 2. Range-independent heterogeneous waveguide section.

In the waveguide illustrated in Figure 2, the acoustic pressure, P, satisfies the following

partial differential equation (with e'iox time dependence and cylindrical symmetry)

{rl'dr(rdr) + p(Z)dZ(P'(Z)dZ) + C } Z P(r~z) = 0 1

where c(z) and p(z) represent, respectively, the depth dependent sound speed and density.
In order to derive the PE equations, we first remove cylindrical spreading from the problem.
That is, we define a reduced acoustic pressure, p(r~z), such that

P(r, z) ~p(r, z) . (2)

Equation (1) can then be written (neglecting a term O(r -2)) as Helmholtz equation

{d2 + p(z)d~p-'(z)dz] + c2~z p(rz) = 0 (3)
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This equation can be factored into two first-order partial differential equations

{d, _ ikoQI 2 (Z)}r(rZ) = 0 (4)

and

{dr + ik.Q 112 (z)}fi(r,z) =0 (5)

where ko = a*co is a reference wavenumber, co is a reference speed and

Q 2(z) = {k2p(z)d [p(z)dI + n2 (z)} 1/2(6)

is a pseudodifferential square root operator characteristic of parabolic equation methods.
The refractive index, n, is defined as n(z)=codc(z) and the field quantities, 6(r,z) and
P(r, z), represent respectively, the forward and the backward propagating reduced pressure
fields. The approximate solution of equations (4) and (5) can be obtained by approximating
the square-root operator, by discretizing in range and depth and by marching in range. First,
in anticipation of a marching solution, exponential phase factors are removed such that

P(r, z) = e+i I.,r ry(r, Z) (7)

and

P(r,z)=e eikor r(r,z) (8)

which define PE field variables, v(r,z) and v(r,z). In this work, the operator Q112 is
approximated by a functional form, F(Q), which will be specified in subsequent sections.
Equations (4) and (5) can then be written as

{dr - iko[F(Q) - 1]} (r,z) = 0 (9)

and

{dr + iko[F(Q)- l]jt(r, z) = 0 . (10)

Solutions of equations (9) and (10) are required in order to describe the field within any
range-independent section of the waveguide shown in Figure 1. Of course, the complete
solution of the problem also requires that the fields satisfy boundary conditions at the
vertical interfaces between these sections.

2.2 Vertical Interfaces

At each vertical interface of the range-dependent waveguide illustrated in Figure 1, the total
field must satisfy continuity both of acoustic pressure and of horizontal displacement. A
single scatter approximation is made whereby the interaction of backscattered fields
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between vertical interfaces is ignored. Thus, for forward propagation (see Figure 1), we
neglect the backscattered fields just to the niht of all vertical interfaces. As an example,
consider the interface at r=-r. between the JUn and the J+lth section. In the single scatter
approximation, the boundary conditions may be written as

S+ P= (11)

and

PV wa~orP5,(ri, Z) + P, (ri,zd]= P;l+,,z dr [PJ+l (rp z)] (12)

where lower case subscripts refer to the range and the capitalized subscripts refer to the
range section (i.e. the J+ith range section is defined between ranges rj and rj+1). In terms
of the PE fields, equations (11) and (12) can be rewritten as follows

ej1ý' j(rj,z)+ z) (13)

and

ej p"l(z){rifj(rj,jz) + K if jr(J, Z)) + {Jj rj (rjz) + K" / vjJ(rjZ)J (14)

= ejp;+i,(z){ar fvj+i(rjz) + KJ' rj+,(rj,z)}

where

ei 2k=e rj (15)

and

Kj±= iko{11 ± [i2korj]-'} (16)

The acoustic pressure in the range-dependent waveguide can be obtained by solving
equations (9) and (10) in each section and requiring that those solutions also satisfy
equations (13) and (14). The numerical solution of these equations forms the basis for a
two-way PE algorithm.

3. TWO-WAY PE ALGORITHMS

In this section the two-way PE algorithms (DJTPE and GHBPE) are described. Within any
range-independent waveguide section, the algorithms use a Crank-Nicolson discretization
scheme in range and a finite-difference based discretization in the depth coordinate. The
algorithms differ, however, in the manner in which the depth discretization is implemented,
particularly for the continuity equations at the vertical interfaces.

The Crank-Nicolson scheme is straight range coordinate, equations (9) and (10) may be
written as
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{1 - ikoAr[F(Q)- 1/ 2}1 j(r + Ar) = {1 + ikArqF(Q)- 11/ 2}1(r) (17)

and

{1 - ikoAr[F(Q)- 11 2}1 (r- Ar)= {i + ikoAr[F(Q)- 1/ 2} *(r) (18)

Equations (17) and (18) state simply that forward (-+) and backward (+-) propagating
fields satisfy the same equation, a requirement for isotropic media. It remains to perform
the discretization in the depth coordinate.

3.1 DJTPE

The Thomson two-way PE algorithm (DJTPE) assumes that the medium is continuously
heterogeneous within any range-independent section. This assumption implies that there is
a continuous transition of material parameters at the interface between the water column
and the ocean bottom which, in turn, directly affects the discretization scheme used in the
depth coordinate. DJTPE employs a Claerbout [6] square-root approximation, Fc(Q),
defined as

Fc(Q) = 1+ 0.5Q/[1 + 0.25Q] (19)

where

Q=l+E+ll (20)

e=n 2(z) -_ + [i 2n(z)a(z)] / ko (21)

S<222

and where a(z) is the depth-dependent intrinsic absorption of the medium. Substitution of
equation (19) into equation (17) leads to the following Crank-Nicolson finite-difference PE
approximation for the forward propagation within the Ath range segment (superscript T
refers to DJTPE)

L,_'= L4 .+j +'.(r, + ) (23)

where

L 4,. a l+0.25[l ± ikoArlej +P] (24)

and where

[ej +]uj'yj(r, Z) - ypj_. vIj(rj,z-Az)+ Wpj,+ ijj(rj,z+Az)+ (25)

13 + Wokso I Z

132 PE Workshop 11



PE Workshop II: Pat 3- Couatibuted Papers

y = [koAz]- 2  (26)

P,,o = PJ,-. + P.4+ (27)

pj,± = 2pj(z) / [pj (z) + p,(z ± AZ)]" (28)

In this discussion, Z represents a depth vector whose components are the grid depths; the
PE fields may now be interpreted as vectors over those depths. The A notation in equation
(24) is used to define the matrices LT,+ and LT. in terms of the operators ej and yj
(subscript J refers to the jh range segment). Clearly, the modified centered-difference
formula given by equation (25) results in a tridiagonal form for the matrices, L,,+ and
LT_. DJTPE, therefore, is marched through any range-independent waveguide section by
solving a tridiagonal matrix system at each range step (as is the case in most acoustic PE
algorithms).

The final task is to discretize the continuity equations at the vertical interfaces. The
difficulty lies in equation (14) where there are terms involving dry and dr,7'. A direct
substitution for these terms may be made from equations (8) and (9) with the result that (at
the jth interface)

(vj(rj,z)=ej[y'j+.(rjz)- rgj(rj,z)] (29)

and

{p-'F(QJ) +p;+1 F(Qj+,) + [12k11 ] P-iPfr+i}(l'z) 30

= 2p;'F(Qj) fr.,(rj,z)

In deriving equation (30) from equation (14), we have used equation (29) to eliminate
'j (rj, z). In any case, the continuity conditions now involve an approximate square root

operator, F(Q). Because DJTPE assumes the medium to be continuously heterogeneous, it
is possible to use a standard (Tappert [7]) square-root approximation (i.e. F(Q) = (I +Q)12)
and then apply equation (25) directly. The result is a finite-difference approximation to the
interface conditions which may be stated as

=j(Q) = ej{ Irj+l (ri,z) - rj(•,z)} (31)

and

{Rj+,MjT+,._ + R.MjT,+}fj+,(rj,z)= {Rj[Mj._ + MjT+ }1,(rj,z) (32)

where Rj and Rj+ , are diagonal matrices with elements defined by the reciprocals of pj and

PE Workshop 11 133



PE Workshop II: Part 3 - Contributed Papers

P,+, respectively. Once again using the A notation, the matrices MJT+ and MT are
defined in terms of the appropriate operators as

ML A {1 ± [i 2kr' + 0. 5[e, +P} (33)

It follows that the matrices ML and MJT_ are tridiagonal and that equation (32) represents
a tridiagonal matrix system for the forward scattered field at the jth vertical interface. The
solutions of this equation can then be substituted into equation (31) to obtain the
backscattered field if desired.

In summary, DJTPE is a finite-difference two-way PE algorithm that uses a wide-angle
Claerbout square-root approximation in marching the acoustic field through range-
independent sections of the waveguide. It employs a Tappert square-root approximation in
the solution for the scattered fields at the vertical interfaces. Computationally, the
algorithm requires a tridiagonal matrix system to be solved not only at each range step but
also at each vertical interface. Roughly speaking, the computational load for the DJTPE
algorithm is twice that of a conventional one-way PE.

3.2 GHBPE

The Brooke two-way PE algorithm (GHBPE) assumes that the medium is made up of
horizontally-stratified homogeneous layers; Thus, at the interface between the water
column and the ocean bottom, the sound speed and the density are allowed to be
discontinuous. The assumption of horizontal stratification is used directly in the
discretization scheme for the depth coordinate. That is, the depth grid points are defined by
the interfaces between horizontal layers (i.e. the waveguide is divided into many
homogeneous horizontal layers ).

GHBPE employs a rational linear square-root approximation (with complex coefficients)
of the form

FB(Q) = I + acQ / [I + bcQ] (34)

where

Q=ko2 dz + n2 (z) + i 2n(z)a(z) / k, (35)

The complex coefficients ac and bc are chosen according to a scheme detailed elsewhere
[4]. In this work, their numerical values are given by ac = -0.4999976+iO and bc =
0.2500012-iO.0148130. It suffices to say that they are close in magnitude to the
corresponding Claerbout coefficients (see equation (19)) but have a small imaginary
component. In an acoustic PE, complex square-root coefficients introduce an artificial
absorption that serves to attenuate high-angle energy. Depending on the choice of co, it is
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possible to attenuate artificially the low-angle energy as well. Care must be exercised,
therefore, to ensure that the propagating energy of interest is not significantly attenuated.

In contrast to the DJTPE algorithm, substitution of equation (34) into equation (17) does
not lead to an equation which can be discretized directly in the depth coordinate. Clearly,
the horizontal interface between the water column and the ocean bottom precludes the use
of a centered difference form for 02 This problem is alleviated by using a discretizationZ

scheme (devised by Greene [8]) in which the waveguide is divided purposely into many
horizontal layers. Briefly, this scheme may be described as follows. At the interface
between layers, equations which represent continuity of pressure and of vertical
displacement are written in terms of second-order accurate forward (and backward)
difference formulae. These forward and backward differences involve the operator d2.
Equation (17), in conjunction with the square-root approximation in equation (34), is used
to eliminate d2 from these difference equations. Combining the resulting equations from
all of the interfaces produces a tridiagonal matrix. Consequently a finite-difference PE
algorithm can be derived which is marched in range by solving a tridiagonal matrix system
in accordance with other acoustic PE algorithms. That is, for forward propagation
(superscript B refers to GHBPE)

LR -. t(rj,Z) = L,+ f(rj_,g) (36)

and for backward propagation

ryr-,0= L~i+fj.y(rj, Z) (37)

where the matrices L•,+ and L?_ are tridiagonal and are obtained using the procedureoutlined above. It is important to note that these matrices are not identical to the marching

matrices defined by equation (23) in the DJTPE algorithm. A similar notation has been used
only to be consistent.

The final step in defining the GHBPE algorithm is the discretization of the continuity
equations at the vertical interfaces. As was stated previously, a direct substitution of
equations (9) and (10) into equation (14) leads to an equation which involves d.2 (from the
functional form of the square-root approximation). Once again, the horizontal "iayering of
the waveguide does not allow this operator to be approximated by centered differences.
Consequently, a different approach is required. Consider the first-order difference
approximations given by

dr ry(r, z) ---[(r + Ar, z) - ýv(r, z)] /Ar (38)

and

PEry(r,z) -[(r- Ar, z)k- ho(r, z)] / Ar (39)
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A comparison of equations (36-37) and equations (38-39) shows that in any range-
independent section of waveguide (in particular, the jth section) the following relationships
hold

and

Using equations (40) and (41), equations (13) and (14) may be discretized with the result
that

fryj(rjz) = ej I ryj+i(rj,z) - ývj (rj, z)} (42)

and

[j + RjM7+ +(rj, Z) = {Rj[ . '+ M ]}jr, Z) (43)

where the matrices R., and Rj+l have already been defined in terms of the densities and
where the matrices MB and M._ are given by

M39, = {1 - ikoA{ ± (2krj)}I l-{L,_} 'j,+ (44)

where I is the identity matrix. We note that although Le and LP, _are tridiagonal matrices,
the matrix inverse involved in equation (44) implies tiat the matrices MB and MB are
dense.

The above analysis indicates that a two-way finite-difference PE algorithm for horizontally
layered media can be derived in which the fields are marched through range-independent
sections by solving a tridiagonal matrix system at each range step and in which the
scattering at each of the vertical interfaces is obtained from the solution of a dense matrix
problem. Clearly, the computational load involved in such a procedure is prohibitively
high. Fortunately, an alternative in the form of an iterative scheme is available.

Consider equation (43) premultiplied by the matrix product of {L ,_} and {R;'} and then
rearranged to form

LP..{EI - ik0Al 1-(2korj)-']]R;IRj+i +M7}j' irj~'+ I rj+1(rj,(45)

= L~j,..Mj,,.+Mj,+}I7Ijrj,z) + L%..{RJ'Rj+1 }4v+i(rj,')
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where

#J+1 (r = {L!J+I,..} LJ+I,+ *J+i(r 1,Z) (6

A comparison of equations (46) and (36) shows that the field quantity Oj+i(rjZ) is just the
unknown forward scattered field marched ahead one range step in the J+lm range segment.
Furthermore, if an approximation to Oj+i(rj,z) is obtained and substituted into equation
(45), then the resulting matrix system involves only tridiagonal matrices and its solution
yields the forward scattered field (premultiplying by the product of {Lj_} and {RY1}
serves to tridiagonalize much of the original equation (44)). Thus, an iterative solution or
equation (45) may be obtained as follows:

1. Approximate @'j+i(iz) with OfriZ)

2. Calculate the zeroth iterate OjO+l(r,'z) by marching ffj+i(rjz) ahead one range
step in the J+lth range section.

3. Solve equation (46) for an improved estimate of rj+1(),z)

4. Calculate the ith iterate 0'+1(rj,4) by marching ryj+l (jz) ahead one range step
in the J+lth range section.

5. Repeat steps 3 and 4 until results converge.

In summary, GHBPE is a finite-difference two-way PE algorithm that uses a rational linear
square-root approximation (with complex coefficients) in marching the acoustic field
through range-independent sections of the waveguide. Also, it employs an iterative scheme
to solve for the scattered fields at each of the vertical interfaces. Computationally, the
algorithm requires one tridiagonal matrix system to be solved at each range step in the
marching and 2N (N is the number of iterations) tridiagonal matrix systems to be solved at
each vertical interface. Clearly, the computational load in GHBPE is significantly higher
than in DJTPE and is a direct result of the initial assumption that the waveguide is
horizontally stratified.

4. NUMERICAL RESULTS

In this section, numerical results are presented which illustrate the application of the two-
way PE algorithms, DJTPE and GHBPE, to the ASA Benchmark Wedge problem [1]. The
wedge configuration is illustrated in Figure 3. It represents a water layer (p=l, c=1500)
over a sloping sediment layer (p=1.5, c=1700, o=O.5dB/X). The source frequency and
depth for this problem are 25Hz and 100m respectively, and receivers are located at depths
of 30m and 150m. Propagation loss as a function of range has been calculated using the
two-way algorithms DJTPE and GHBPE for each receiver depth and compared to results
obtained using the full spectrum coupled-mode model. For comparison purposes, the same
results were generated using one-way versions of the algorithms ( i.e. versions of DJTPE
and GHBPE which do not include backscatter). All of the PE results presented here were
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computed using a grid of 5m in range and 0.5m in depth. Also, for both algorithms, the
perfect reflector was located at a depth of 1000m and an artificial absorbing region was
located between depths of 500m and 1000m with absorption increasing from the intrinsic
value at 500m to the intrinsic value plus lOdB/X at 1000m.

0km 4km

0M

c= 1500m/s

200m - =70 s.. . " "ii~i:•.i ......................... , ...... ....

Figure 3. ASA Benchmark Wedge configuration

First consider the case involving the shallow receiver at 30m. A plot of transmission loss
versus range for the one-way version of DJTPE without backscatter is shown as the solid
curve in Figure 4(a). The reference solution obtained using two-way coupled modes is
shown as the dashed curve in this figure.

There is an obvious discrepancy between the two curves indicating that a one-way PE (as
is now well known) does not perform well in this problem. The results obtained using the
two-way DJTPE algorithm are shown in Figure 4(b) as the solid curve. Once again, the
reference coupled mode results are shown as the dashed curve. Clearly, the two-way PE
algorithm is generating much more accurate results. Note that, at close ranges the PE is not
able to represent accurately the higher angle energy-a better square-root approximation
would alleviate this problem.

Corresponding results obtained for the deep receiver at 150m are shown in Figures 5(a) and
(b), respectively. As was the case in the previous example, these figures show that the two-
way DJTPE algorithm is required in order to generate accurate results for the ASA
benchmark wedge.

The results obtained for the shallow receiver, using the one- and two-way GHBPE
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Figure 4. ASA Benchmark results (solid) for R=30m: a) one-way DJTPE and b) two-way
DJTPE. Two-way coupled mode reference (dashed).
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Figure 5. ASA Benchmark results (solid) for R=150m: a) one-way DJTPE and b) two-way

DJTPE. Two-way coupled mode reference (dashed).
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Figure 6. ASA Benchmark results (solid) for R=30m: a) one-way GHBPE and b) two-way

GHBPE. Two-way coupled mode reference (dashed).
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Figure 7. ASA Benchmark results (solid) for R=150m: a) one-way GHBPE and b) two-way

GHBPE. Two-way coupled mode reference (dashed).
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algorithms, are shown in Figures 6(a) and 6(b), respectively. The two-way GHBPE results
were computed with ten iterations for the scattered field calculations. As with the DJTPE
algorithm, a comparison with the reference solution indicates that the one-way GHBPE
algorithm is unable to produce accurate solutions for the wedge problem, however, the two-
way GHBPE algorithm performs very well in this case. The oscillations in the loss curve,
as the receiver passes into the bottom layer at a range of 3400m (Figure 6(b)), seem to be
characteristic of PE algorithms involving range-dependent layered media. Wide-angle
propagating energy (artifact) is excited at the vertical faces. ASA Benchmark results(solid)
for R=30m: a) one-way GHBPE and b) two-way GHBPE. Two-way coupled mode
reference (dashed) vertical faces and interferes with the normal radiated energy into the
bottom layer. A higher-order square root approximation helps to minimize this
interference.

The final test case is that involving the deep receiver at 150m. The results corresponding to
those shown in Figures 5(a) and (b) are shown in Figures 7(a) and 7(b), respectively. As
before, the one-way GHBPE algorithm is not capable of producing accurate results for this
receiver depth. The two-way GHBPE algorithm, however, performs very well. Note that
the GHBPE results are slightly smoother than the DJTPE results, particularly in the deep
null at a range of nearly 3km. This is a direct result of using the complex coefficients for
the square-root approximation in GHBPE which attenuate the high angle energy causing
the interference in the null.

5. SUMMARY

This paper represents a brief outline of a formalism which can be employed to improve the
energy conserving capabilities, and hence accuracy, of PE algorithms when applied to
range-dependent media. Essentially, two-way PE algorithms are devised which mimic
closely the two-way coupled mode formulation. That is, the waveguide is segmented into
range-independent sections separated by vertical interfaces at which the medium is allowed
to change abruptly. The PE algorithms use a single scatter approximation to include
backscatter at the vertical interfaces and, hence, allow the appropriate boundary conditions
to be better satisfied. Two finite-difference PE algorithms are described (DJTPE and
GHBPE) which differ only in the manner in which they are able to treat the discretization
in the depth coordinate. DJTPE assumes the medium to be continuously heterogeneous and
can therefore employ relatively straightforward centered differences in the discretization
procedure. One important consequence of this fact is that DJTPE is able to solve a single
tridiagonal matrix system for the scattered fields at the vertical interfaces directly.
Alternatively, GHBPE treats the medium to be made up of distinct homogeneous horizontal
layers. At the interfaces between layers, the material parameters are allowed to change
discontinuously; the discretization procedure necessarily involves forward and backward
differences. The disadvantage of this procedure is that GHBPE must employ an iterative
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scheme (involving repeated tridiagonal matrix problems) to solve for the scattered fields at
each vertical interface.

The two-way PE algorithms were tested by comparing with reference two-way coupled
mode solutions for the ASA Benchmark Wedge problem. Both DJTPE and GHBPE yielded
accurate results for this problem which confirms that conventional one-way PE algorithms
can be adapted to include backscatter and, thereby, be energy conserving.

Computationally, DJTPE is the most efficient, roughly half as efficient as a conventional
one-way algorithm. It requires the solution of a tridiagonal matrix system at each range step
and at each vertical interface. GHBPE, by comparison, is relatively inefficient because
although a single tridiagonal matrix must be solved at each range step, several such matrix
systems must be solved at each vertical interface.

Finally, the rather limited tests done to date indicate that for acoustic problems involving
heterogeneous media, the two-way DJTPE algorithm is the most promising approach. The
two-way GHBPE algorithm, though relatively inefficient for acoustic problems, may
provide the basis for applying the same approach to PE algorithms for horizontally
stratified elastic media.
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INTRODUCTION

The parabolic equation (PE) method was first applied to wave propagation problems in the
1940s [1]. After digital computers and the fast Fourier transform (FFT) became available,
the PE method became an important computational method for range-dependent wave
propagation. The introduction of an efficient numerical solution based on the FFT led to
the widespread use of the PE method in underwater acoustics [2]. Improving the efficiency,
accuracy, and capability of the PE method immediately became an active area of research.
By the time of the first PE workshop [3], the first finite-difference [4] and wide-angle [5-
7] PE models had appeared. This paper describes some of the improvements in the PE
method that have occurred since the first PE workshop, including some recent work that
has not been published elsewhere. The higher-order, energy-conserving, two-way, and
elastic PEs are described in Sections 1-4. Some of the algorithms and computer codes used
to obtain numerical solutions are discussed in Section 5. Solutions are presented for the
second PE workshop test cases in Section 6. Some results that were obtained after the
second PE workshop are discussed in Section 7.

Although phase errors were significantly reduced when the wide-angle PE was introduced,
the accuracy of the PE method remained an issue of concern, and higher-order parabolic
approximations were proposed [8,9]. In general, asymptotic solutions of differential
equations are not guaranteed to converge even if the leading-order terms are accurate for
some parameter values (e.g., the wide-angle PE is accurate for propagation angles less than
about forty degrees from horizontal). Thus it was uncertain how much the aperture
limitation of the PE could be reduced. The accuracy issue was resolved [10,11] when
accurate solutions were obtained using the Pad6 approximations of [9] for problems
involving propagation nearly orthogonal to the preferred direction and large piecewise-
continuous depth variations in sound speed and density.

After phase errors were eliminated for range-independent problems (i.e., problems
involving horizontally-stratified media), attention shifted to reducing amplitude errors for
range-dependent problems (the most important application of the PE method), and range-
dependent PEs (i.e., PEs designed for improved accuracy for range-dependent problems)
were proposed [12-18]. Although it has been confirmed that the range-dependent PEs of
[13] and [14] provide improved accuracy for some problems [18], the rotated PE was the
first range-dependent PE confirmed to provide improved accuracy [16]. The energy-
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conserving PE [18] is accurate for the outgoing component of most range-dependent
problems, including problems involving steeply sloping ocean bottoms, very wide
propagation angles, and large range and depth variations in the acoustic properties. The
development of the energy-conserving PE involved the generalization of an energy-
conserving normal-mode model [19] using a special numerical solution to avoid Gibbs
oscillations.

After the PE method was improved to accurately handle outgoing energy, attention shifted
to accounting for back-scattered energy. A PE that accounts for reverberation stochastically
has been applied to model ocean-bottom back-scattering data [20]. It is more difficult to
account for reverberation with the PE in a deterministic fashion. A pair of coupled PEs has
been applied to model ocean-surface scattering [21]; however, accurate results were
obtained only for the forward scattered field. The single-scattering approximation [22] has
been incorporated into the PE to account for back-scattered energy and to further improve
the accuracy of the outgoing component of the solution [231. The two-way PE has been
applied to solve reverberation problems that are too large and complicated to solve with
other existing wave-based models and to simulate the localization of scatterers [23].

Extending the PE method to handle elastic ocean bottoms has been a topic of interest ever
since the PE was first applied to underwater acoustics, and several elastic PE models were
proposed prior to the first PE workshop [24-27]. The elastic PE requires a formulation that
permits factorization [28], high accuracy for handling different waves speeds and nearly
vertical propagation [29], and a special parabolic approximation to avoid instability [30].
The first successful elastic PE models [29,30] were combined and generalized [311 to
obtain an elastic PE that is accurate and stable for range-independent problems,
propagation nearly orthogonal to the preferred direction, propagation of all wave types
including interface waves, and large depth and gradual range variations in the elastic
properties. Although accuracy improvements are still being developed for range-dependent
problems, accurate solutions have been obtained for problems involving sloping ocean
bottoms with the rotated elastic PE [31] and the energy-conserving elastic PE.

1. THE HIGHER-ORDER PE

In this section, we describe the higher-order PE and its numerical solution. The acoustic
pressure p is assumed to satisfy the pressure-release boundary condition p = 0 at the ocean
surface and at an artificial boundary many wavelengths within the sediment. Since the
sediment is lossy, the condition at the lower boundary accurately approximates the
outgoing radiation condition at infinite depth. We work in cylindrical coordinates, where z
is the depth below the ocean surface and r is the horizontal distance from a point source at
z = z0 . We assume that 1kd >> 1 and remove the spreading factor r-1 /2 from p. Range-
dependent environments are approximated by a sequence of range-independent regions. In
each range-independent region, the acoustic pressure satisfies the farfield equation,
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d2 p d+ dp 2 (1)

where p is the density, k = (1 + iqrf)(o / c is the complex wavenumber, q = (40xlogio e)-l,
P is the attenuation (in decibels per wavelength), c is the sound speed, and (o is the circular
frequency.

Since the acoustic parameters c, p, and P depend only on z, Eq. (1) factors as follows:

(-!ý + ,koKX-. - ikoK) p = 0 , (2)

K'- l~k-2 P p +z

where co is the reference sound speed and ko = (o / co is the reference wavenumber. The
following approximation is valid if the outgoing component of p dominates the incoming
component:

r= ikoKp . (4)

We apply a Pad6 approximation for the square-root function in Eq. (3) to obtain the higher-
order PE,

S= ikol l M1 + a2,MX '

Since this Pad6 approximation involves only first powers of x, the numerical solution
involves tridiagonal matrices, and multiple depth derivatives of the acoustic properties do
not occur. There are different choices for the Pad6 coefficients that have different benefits.
The following coefficients of [9] provide an approximation to K that is accurate to O(x2 U):

a2j-1,M---2 sin2 Jy (7)
2M+I 2M+l

a2j'M =COS 2 Pr (8)
2MP +
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The case M = 1 corresponds to the original wide-angle PE [5]. The Pad6 coefficients
described in Section 4 and tabulated in [31 ] are useful for suppressing Gibbs oscillations in
the energy-conserving PE and instability in the elastic PE.

The numerical solution of the higher-order PE is based on the method of operator splitting
[32]. The first term on the right side of Eq. (5) is handled by analytically removing the
factor exp(ikor). The operator splitting solution of Eq. (5) requires a numerical solution for
the following equation for j = 1,....M:

(1+ a2j,Mx) = (ikoa2jl,MX)P. (9)

Finite differences based on Galerkin's method [29] are used to discretize Eq. (9) in z and
Crank-Nicolson integration is used to integrate in r.

2. THE ENERGY-CONSERVING PE

The higher-order PE may be applied to solve range-dependent problems by allowing the
acoustic parameters appearing in Eq. (5) to depend on r. Although this approach is accurate
for many problems, large amplitude errors may arise for problems involving sloping ocean
bottoms. The appropriate leading-order correction can be determined by considering the
limit of arbitrarily small p. opagation angles, an approach that has been successful for
accounting for the effects of nonlinearity [33], attenuation [34], dispersion [35], and three-
dimensional variations [36,37] in outgoing solutions of the wave equation. We also present
a complete energy-conservation correction in this section. Since the leading-order
correction is robust, however, it is sufficient for most (if not all) ocean acoustic propagation
problems.

For arbitrarily small propagation angles, p satisfies the following farfield equation in range-
dependent media:

d2 p I dp op + k2P=0. (10)
dr2  p ar or

We assume that k has been rendered dimensionless with a length scale appropriate for the
rate of range dependence. Substituting the WKBJ ansatz p = Aexp(i Y') into Eq. (10), we
obtain

d2A . A i _ A (dVf') 2 _ 1 p dA iA dp dyf + k 2
-+2i--+A AM IKy ----A- A =0. U11)

dr- ' dr2  dr p dr dr p dr dr
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We assume that IkI >> I and O!'=0(k) and balance terms of O(k2 ) to obtain

Vr(r) = r k(r')dr'. (12)

Balancing terms of O(k), we obtain the appropriate amplitude factor for range-dependent
media,

+A- = 0, (13)

dr dr p& Pdr dr

A(r)= I p(r)c(r) A(O). (14)
ý (iO-c(O)

We define the new dependent variable u = p/ a, where a = 4f, and Eq. (1) becomes

d2u pdld 12
dU+-----I--au+k 2u=0 (15)

dr2 -dz pO

For range-independent environments, Eq. (15) reduces to the following outgoing wave
equation:

dr = ikku, (16)
Tr

k l+Wr(k.d I d k 2 _4 (17)
~~1.adzpdz- '

In the limit of arbitrarily small propagation angles, Eq. (16) reduces to

d = iku, (18)
dr

which has the solution,

p(r)= p(0) -T- exp 0 k(r')dr']. (19)atO) L-

We observe that Eq. (16) behaves properly in two important limits: it reduces to the WKBJ
solution of Eq. (10) in the limit of small propagation angles; it reduces to the higher-order
PE in the limit of gradual range dependence. We apply a Pad6 approximation for the
square-root function in Eq. (17) to obtain the higher-order energy-conserving PE,
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d = M 2 -. u (20)
dI 4=

1 Z•fj,Mtx)

._ -- I d k2_- J" (21)

To avoid Gibbs oscillations, Eq. (20) may be solved using either the special numerical
solution described in [18] or the complex Padd coefficients tabulated in [31].

Although the energy-conserving PE of Eq. (20) is based on a small-angle assumption, it
performs very well for most wide-angle problems. For some problems, however, a higher
level of accuracy may be desirable. A range-dependent environment is approximated by a
sequence of range-independent regions. Uf back scattering is negligible, a high level of
accuracy may be achieved by conserving the energy flux,

1 dj

E p=-I--.p ,(22)
P dr

across the vertical boundaries between range-independent regions. The exact solution
conserves E across boundaries because both p and E/ p are conserved. We denote the
incident and transmitted fields at the boundary between regions A and B by pi and Pt. One
approach for conserving energy is to substitute Eq. (4) into Eq. (22) and enforce the
following point-wise boundary condition:

I ptKBp, = - p KAP, (23)
Pa PA

where the subscripts A and B denote evaluation in the respective regions. Since this
nonlinear boundary-value problem is difficult to solve, we apply the alternate condition,

f I ptKBptdz= f1 piJKApdz . (24)

PB PA

To derive a linear condition from Eq. (24), we apply the normal-mode representation,

P = I X,, 0. (25)

where 0. and Z. are the normal modes and modal coefficients. Using Eq. (25) and the
inner product for the normal modes, we obtain
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J~K ~ 2Xkx, (26)
P

where the kn are the eigenvalues. Therefore, Eq. (24) is a point-wise boundary condition
in mode space. Substituting Eq. (25) into Eq. (24) and rearranging, we obtain the linear
condition,

1'/2p 1 KA11 2pi" (27)

This energy-conservation approach requires slightly more work than Eq. (20) but less work
than the two-way PE described in Section 3. The product representation (see Section 3) of
a Pad6 approximation is used to implement the operator K"2 as described in [38].

3. THE TWO-WAY PE

In this section, we describe a single-scattering approach, which is related to the on-surface
radiation condition method for scattering from compact objects [39]. In addition to
handling back scattering, the two-way PE handles forward scattering more accurately than
Eq. (20) for some problems. The following conditions must be satisfied at a vertical
interface between range-independent regions A and B:

Pi + Pr -"Pt (28)

1 •p+Pr) TA (29)

PA dr Pa r

where Pr is the reflected field. Using Eq. (4), we replace the range derivatives in Eq. (29)
with the depth operator K for the two regions (using the appropriate sign for the reflected
field) to obtain

I KA(Pi - pX) KBP. (30)
j)•A PB

Since KA and KB arc depth operators, we may eliminate Pt from Eq. (30) using Eq. (28)
to obtain

(I KA+ IKB Pr= IKA --- K P (1
kPA PB ( PA _P8

One approach for computing the reflected field is to solve Eq. (31) directly. This inefficient

approach involves a large non-banded matrix that requires a large amount of computer
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memory space and a large amount of effort to invert. The reflected field can be computed
efficiently with the following rearrangement of Eq. (31):

Pr = ' (l- K;' PA K. ) (pi - pr). (32)2 PB

With this iteration formula, the current Pr iterate is substituted on the right side of Eq. (32)
to compute the new iterate. This iteration scheme requires the solution of tridiagonal
systems. If the initial iterate is taken to be Pr = 0, the iteration scheme is equivalent to the
Neumann series [40],

Pr =(A-A 2 3+ A3-...)pi (33)

2 PB

The Neumann series converges if the difference between the operators in the two regions
is sufficiently small.

If the variation in the environment across a vertical interface is large, the Neumann series
may diverge. For improved convergence, we use the following rearrangement of Eq. (31):

Pr =--2--pr I+ I K-lPA K) (Pi -Pr)- (35)

where y > 2 is a convergence factor. For y = 2, Eq. (35) reduces to Eq. (32). For y > 2,
Eq. (35) converges for larger A than Eq. (32).

We have implemented the iteration schemes using the following Pad6 approximations:

K = I +x =_ iM 1 + bj-1 ,MX (36)
J= I-b2jMX'

K_= I M 1+b2j,MX

K-1 m I + b(37)
-• I + x =Y 1 + b2j-l,Mx

The product approximations defined by the coefficients tabulated in [23] are identical to the
sum approximations defined by the Padd coefficients tabulated in [31].
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There exists a direct solution of Eq. (31) that is based on banded matrices. The numerators
and denominators in Eq. (36) are denoted by N and D, where K = ND-' = D-1 N.
Substituting this notation into Eq. (31) and rearranging, we obtain

(NADB + DA-•B NBjDj'pr =NADB- DA IPA NB DI' pi (38)

In contrast to the iteration scheme, this approach involves matrices with more than three
diagonals.

4. THE ELASTIC PE

The derivation of the elastic PE begins with the following farfield equations of motion [41]:

d2w d2w 2,~ oA ap• ot aw_'-wr +,d- 2 +pt2w+ (;L,+ Y)--d- +---A A+2 Lz dz = 0, (39)

( d+2•-r +( + 2/•2+r A + d~ o~2W+ -'Z

-+2 dZ2 +2- d____
dA dA2dLP p+w =A 0 (40)

dz dz ) dz dzadz ) dzk..dzdz)

This formulation is convenient for problems involving continuous depth variations in the
elastic properties. Loss is handled by using the complex compressional and shear speeds
CP = cP / (I + iilfp) and C, = c, 1 (1 + iqfis), where cp and c, are the real wave speeds
and 13p and fl, are the compressional and shear attenuations. The Lam6 constants A andjp
are defined by A. = p(C2 - 2C,) and u = pC>.

Equations (39) and (40) provide a coupled system of the form

F 2  + G (A)= (0 (41)

where the matrices F and G contain depth operators. In contrast to other formulations of
elasticity, Eq. (41) does not contain a term involving d / dr. Furthermore, the depth
operators F and G commute with d / dr. Thus we may factor Eq. (41) to obtain the
outgoing elastic wave equation,

F-'(G - 4F ) ( A)d9 ( = iko (42)

drPw Wrs 2 I1
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To derive an elastic PE from Eq. (42), an approximation for the function,

f (o) = 0 _+t , (43)

is used to evaluate the depth operator appearing in Eq. (42) as a differential operator, where
the square-root function is defined in terms of the branch lying in the upper half of the
complex plane. The following approximation is a generalization of the Padd series of [9]:

f ag) l J-M C (44)
j=f l+a2j,M 

C

where the coefficients depend on M and may be complex. Applying the Pad6 series to Eq.
(42), we obtain the higher-order elastic PE,

d (A)= ik[I a2jrIMFil G - kOF)] (45)

Equation (45) is valid in layers in which the elastic parameters vary continuously. For
problems involving piecewise-continuous depth variations, discontinuities at boundaries
are handled by applying the appropriate conditions for the displacements and stresses. We
use generalizations of the interface conditions of [281. To allow the factorization of Eq. (41)
for problems involving multiple layers, these interface conditions (which are incorporated
into the operators F and G) are formulated so that they involve only depth derivatives of
the solution. Vertical displacement and both stress components are continuous across an
interface between fluid layer A and solid layer B, and the following conditions are applied:

- (AA AA)+ PA w02 WB=0, (46)

;,AAA-=;LAB+ 2 I °WB (47)

d (ABAB)+ 2 d(i'B !ýý+PBO) 2WB =0. (48)

Conditions for other types of interfaces, which have been implemented and tested, are
given in [311. A numerical method for solving Eq. (45) with these interface conditions is
described in [29].

To obtain an elastic PE that is both accurate and stable, we derive Padd approximations that

have the capabilities but not the limitations of the Pad6 approximations of [9] and 130]. As
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discussed in [30], approximations that map the lower half of the complex plane into itself
can have stability problems. We refer to the PadM approximation of [9] as g0 (ý), which
corresponds to g(C) for the Pad6 coefficients given by Eqs. (7) and (8). These coefficients
are obtained by requiring that the first 2M derivatives off and g agree at C = 0. Although
this approximation is accurate, it does not have the stability properties of the approximation
of [30].

To obtain a stable higher-order elastic PE, we require that the function,

Frj ( C) = d. (f -_g) ,(49)

vanish at C = 0 for 1:< j _ 2M - m. To determine the 2M coefficients of g, m additional
constraints are required. Growing solutions can be eliminated by mapping points slightly
below the real line for Re(C) < -1 into the upper half of the complex plane [30]. Thus we
require that the functions,

F2M-m+j (C) = g(4 'j - ) - vi, (50)

vanish at C = 0 for j = 1,...,m, where Im(Cj)• 0, Re(Cj)!< -1, and Im(vj) > 0. Other
types of constraints, involving derivatives for example, might also be useful. As described
in [23], Newton's method may be used to determine the Pad6 coefficients for which
Fj(0)=0 for j =1 ... 2M.

For problems that involve thin elastic layers such as ice cover, it may be necessary to take
m > 1 for stability. For problems that do not involve thin elastic layers, the eigenvalues in
the lower half of the complex plane are very close to the real line; and stability can be
achieved by verturbing the go coefficients by taking m =1, Im(ý,) = 0, and
V, = go(CT) + iel, where el is a positive real number. This PadM series is slightly less
accurate than the Pad6 series of [9] because one less derivative is required to match. This
trade-off of accuracy for stability is an excellent bargain. For the case El = 0, the
coefficients given by Eqs. (7) and (8) are recovered. The coefficients for the first seven
Pad6 series are tabulated in [31] for P, = I and C, = -3. The complex Padd coefficients are
also useful for filtering out Gibbs oscillations in the energy-conserving PE solution [181.

The two-way PE has been generalized to elastic media. In a solid medium, the following
conditions must be satisfied at a vertical interface between range-independent regions A
and B:

RAA(i-'r RS At, (51)
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TA [(Ai) + (j]= TB(A)~ (52)Ai A, W

where

R -] (53)
R= d 2+ d d

S=d-I d 1 H k+b 2jMF7(G- F) (54)

- r:' -iko j= k4 +bkj.1 MF (G -kj F)

A + 2#u -2.u -

T = (j(55)
0 1

The subscript notation in Eqs. (51) and (52) is analogous to the notation used in Section 3.
Conservation of normal displacement u and tangential stress oz is given by Eq. (51).
Conservation of vertical displacement w and normal stress o,, is given by Eq. (52). The
operators R, S, and Thave been implemented (and tested for accuracy) for computing basic
quantities (such as u, a,, and arz) from the dependent variables A and w. From Eqs. (51)
and (52), we obtain the iteration formula,

[Ar) 2 2(Ar)+ (I _ S1 RX RBSBTIT ) (56)

•.Wr - f Wr Y W W,

which is analogous to Eq. (32). The two-way elastic PE is implemented only for solid
media at this time.

The energy-conserving PE has also been generalized to elastic media. The compressional
and shear energy fluxes EP and Es [42] are defined by

(E') = uyrr )'E _w (57)

The energy fluxes are conserved across a vertical interface for the exact solution because
all four quantities on the right side of Eq. (57) are conserved. We derive a leading-order
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correction for the small-angle limit. As in the acoustic case, the approximation is not
actually restricted to small angles. We consider the case of a sloping fluid-solid interface,
which is approximated by a sequence of stair steps. Since -z vanishes on the runs of the
stair steps, this quantity and E, go to zero on the rises of the stair steps as the lengths of the
rises goes to zero (the accuracy of the rotated acoustic PE is due to a similar limit involving
the ocean surface [16]). Therefore, it is only necessary to correct Ep. As in the acoustic
case, we define the new dependent variable U = A / a. In the small-angle limit, Ep is
conserved for the case

a 3=-1/2 (58)a pcý) -

This correction, which is larger than and in the opposite direction of the correction for the
acoustic PE, is accurate for a large class of problems. Since it is not as robust as the leading-
order correction for the acoustic case, however, a complete energy-conservation correction
would be useful for the elastic case.

5. COMPUTER IMPLEMENTATION

The PE models we have described have been implemented as FORTRAN computer
programs. The codes have been used as subroutines for applications such as inversion for
sediment properties [43], Fourier synthesis of time-domain solutions [23], and modeling
three-dimensional back scattering [44]. Since the codes contain efficient algorithms, they
have been applied to large-scale problems such as modeling global-scale propagation [45].

The code FEPE solves the higher-order energy-conserving PE. A user's guide exists for
this code [46]. Some recent improvements to FEPE are not described in the user's guide,
including the energy-conservation correction, a radiation boundary condition (RBC) at the
lower boundary [43], a special tridiagonal system solver [11], the self-starter [38], and the
capability to handle three-dimensional problems and problems involving rough boundaries
[37]. To reduce the maximum required depth, we have installed an RBC as an option at the
lower boundary of the computational grid, which is a generalization of the RBC of [47].
The RBC approach is more efficient than using an artificial absorbing layer for eliminating
non-physical reflections.

A special tridiagonal solver has been designed to minimize run times for problems
involving sloping ocean bottoms. As ocean depth varies, it is necessary to modify the
entries of the tridiagonal matrices involved in the numerical solution of the PE and repeat
the decomposition of the tridiagonal system. If the decomposition is done with Gaussian
elimination, it is necessary to repeat a significant portion of the elimination process. The
decomposition algorithm implemented in FEPE involves sweeping downward to the ocean
bottom to eliminate entries below the main diagonal and sweeping upward to the ocean
bottom to eliminate entries above the main diagonal. With this algorithm, the run time is
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not affected by bathymetry variations. Due to this and other algorithm improvements,
FEPE is several times faster than other finite-difference PE codes (e.g., compare the run
times reported in [ 11,48]). A version of FEPE that uses a new solution technique discussed
in Section 7 is two to three orders of magnitude faster than other finite-difference PE codes.

The code FEPES solves the higher-order energy-conserving elastic PE. An efficient solver
for banded systems, analogous to the efficient tridiagonal solver in FEPE, has been
installed in FEPES. The self-starter, which properly excites interface waves, has also been
installed in FEPES. Both two-way and energy-conserving versions of FEPES have been
developed and are discussed in Section 7.

6. THE TEST CASES

We have generated solutions for Test Cases 1-4, which are described elsewhere in this
proceedings. These problems are well suited for illustrating the four basic PE models we
have discussed. Our main goal was to maximize accuracy rather than minimize run time.
However, we performed tests for Test Case 2 to illustrate the trade-off between run time
and accuracy. We took co = 1500 m / s for each of the problems. All stated run times are
for a Digital VAX-8650 computer.

Test Case I was solved with FEPE using the computational depth spacing Az = 0.5 m and
range-dependent choices for M and the computational range step Ar. For r < 2 km, we
took M = 12 and Ar = I m. For r > 2 km, we took M = 4 and Ar = 5 m. The lower RBC
implemented at z = 7.5 km was constructed by optimizing a set of coefficients for energy
incident at 30 deg from normal using Newton's method. The half-space PE starter [49]
was used to initialize the PE at r = 200 m. The run time was 3 hr. The FEPE solution
appearing in Figure I is in excellent agreement with the exact solution. This illustrates the
ability of the higher-order PE to handle very wide propagation angles. Since the medium is
homogeneous, an accurate solution may also be obtained for this problem using the split-
step Fourier algorithm [2]. However, the higher-order PE is the only existing PE that is
accurate for problems involving both very wide propagation angles and variations in the
parameters of the medium.

Test Case 2 was solved for a high level of accuracy with FEPE using a PE starter based on
the normal modes for a homogeneous waveguide [46], truncating the grid at z = 2 kin, and
taking Ar = 5 m, Az = 0.5 in, and M = 3. This solution, which required 7 min of run time
and appears in Figures 2A and 2B, is in excellent agreement with the two-way COUPLE
solution [50,51]. We also solved this problem with FEPE using Greene's PE starter [7],
truncating the grid at z = 700 m, taking M = 2, and using larger values of the
computational grid spacings. By taking Ar = 10 m and Az = 2 m, the run time was reduced
to 12 s with only a slight sacrifice in accuracy. The solution generated using Ar = 20 m
and Az = 4 m required only 3 s of run time and is in good agreement with the two-way
COUPLE solution. For Ar = 40 m and Az = 8 m, the run time was 0.8 s and the accuracy
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is fairly good. For Ar=80 m and Az= 16 m, the run time was 0.2 s and the solution is
undersampled but qualitatively accurate. These results appear in Figure 2c.

Test Case 3 was solved with the non-energy-conserving elastic PE (i.e., the implementation
of [28-3 1]), the energy-conserving elastic PE, and the rotated elastic PE using a truncation
depth of 1 km, Ar = 5 m, Az = 0.25 m, and M = 3. These solutions appear in Figure 3.
The rotated and energy-conserving solutions are in agreement. The amplitude error in the
non-energy-conserving solution is in the opposite direction of the error in the non-energy-
conserving acoustic PE solution for the related fluid problem [48]. The run time was
20 min for this problem.

Test Case 4 was solved with a two-way version of FEPE using a truncation depth of 1 km
and Ar = 5 m, Az = 0.25 m, and M = 4. Since multiple reflections are important for this
problem for a point source in cylindrical geometry [23], we assumed a line source in plane
geometry. The outgoing and back-scattered components of the two-way PE solution
appearing in Figure 4 are in excellent agreement with the components of the two-way
COUPLE solution. The run time was 20 min.

We did not solve Test Case 5 because it does not test any capability of the PE method that
is not tested by the other test cases. Due to the uncertainties in acoustic and environmental
data, we did not solve Test Case 6, which is essentially an under-determined inverse
problem. We have applied the PE models described above to other sets of data, however,
and have obtained excellent agreement between PE solutions and the data [43]. We did not
solve Test Case 7 because it is relevant only to split-step Fourier solutions. This is an
interesting test case, however, because it illustrates that unexpected results can occur, even
with a model that has been thoroughly tested and widely used.

7. POST-WORKSHOP RESULTS

There are still many open issues in PE modeling that might one day justify a third PE
workshop. In this section, we discuss some results that were obtained after the second PE
workshop. Both the energy-conserving [52] and two-way [53] elastic PEs, which are
described in Section 4, have been implemented and tested. The energy-conserving elastic
PE has been applied to solve a problem involving mode cutoff and coupling into shear wave
beams in the ocean bottom [52], a generalization of an interesting acoustic problem that
was first solved with the PE method [541. A conversion formula that is local in range and
is useful for displaying solutions has been derived for computing the shear potential from
the variables of the non-standard formulation of elasticity that is used with the elastic PE
[531. The self-starter, which is described in a separate paper in this proceedings, has been
extended to the case of a source in a solid layer [53]. The split-step Pad6 solution is orders
of magnitude faster than other finite-difference solutions [55]. This efficiency gain is
achieved by exploiting the robustness of Pad6 approximations to reduce both asymptotic
and numerical errors. The split-step Padd solution offers the accuracy of the higher-order
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PE and the efficiency of the split-step Fourier solution. An efficient approach for solving
three-dimensional problems has been developed [56]. The direct solution of the three-
dimensional PE is practical only for relatively small problems [371 (only very small
problems are practical for non-PE approaches). Under the adiabatic normal mode
approximation [57], one obtains a set of two-dimensional (range-azimuth) PEs to solve
[56]. Interesting and useful information can be obtained by solving for a small number
(one, for example) of mode coefficients. With this reduction in dimension, it is practical to
solve large-scale (even global-scale) problems.
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The Self-Starter
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INTRODUCTION

The problem of improving the initial condition for the parabolic equation (PE) method [1]
has not received as much attention as other PE-related problems. This problem may be
solved exactly with the method of normal modes [2]. Although efficient methods have been
developed for determining the normal modes [3], this computational task may require a
significant effort, especially when the eigenvalues are complex or the continuous spectrum
is desired [4]. Several approximate PE starting fields have been developed to avoid solving
the eigenvalue problem [1,5-7]. Although these efficient starters are accurate for many
problems, they are based on asymptotic assumptions and break down for some problems.

The self-starter [8] is an efficient PE starter that is as accurate as the normal-mode starter.
The self-starter is obtained by solving a one-dimensional boundary-value problem (BVP)
with the PE method. Since the BVP is similar to the type of BVP that must be solved a large
number of times to find the normal modes, the self starter is more efficient than the normal-
mode starter. The self starter, which is constructed with a direct solution of a differential
equation, is also less prone to trouble than the normal-mode starter, which requires a search
for eigenvalues. The self starter depends on the depth dependence of the ocean and
sediment and satisfies all boundary and interface condik.ons. The self-starter is accurate for
problems involving wide propagation angles, large depth variations of the properties of the
medium, low frequencies, interface waves, and the continuous spectrum.

1. THE ACOUSTIC CASE

For the problem of a line source in a range-independent fluid medium, the complex
pressure p satisfies

d2 P+P p2(I. d" +k Pp = 6(X) 6(Z - z)
d2p dz pdz )

where k is the complex wavenumber, p is the density, x is the range from the source, z is
the depth below the ocean surface, and zo is the source depth. The application of the self-
starter to range-dependent problems is described in [8]. Factoring Eq. (1) for x > 0, we
obtain the outgoing wave equation,
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dp
& =jkO (l+ s) 12p, (2)

where ko is a representative wavenumber and

s=z p + - (3)

Integrating Eq. (1) over an arbitrarily small range interval about the origin, we obtain

lim Ia 3= O 4dp-,0. 2

Substituting Eq. (2) into Eq. (4), we obtain

(1 +s) 1/ 2p= _ 3(z - z0). (5)
2ko

To obtain a differential equation from Eq. (5), we apply the following approximation:

(1+ )1/2 lN' 1+a2j-l,NS (6)- j=1 1 + a2j,Ns

Values for the Pad6 coefficients are tabulated in [91 for N <7. Substituting Eq. (6) into Eq.
(5), we obtain the following BVP for the self-starter:

riN 1 + a2j1I,NS P = 18(z - z0 ). (7)M ~j~I + a2j,Ns

We have attempted to solve Eq. (7) directly and found that this approach is difficult due to
the singularity of p at z = zo.

We have developed an indirect numerical solution of Eq. (7) that is robust and involves
three steps. The first step requires the solution of the BVP,

+s) q = &•o=8Z - zo), (8)
2 k02(8

which is related to the BVP for the wavenumber spectrum [10]. Although Eq. (8) may be
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solved with normal modes, we apply instead the numerical approach described in [ 11] to
avoid the eigenvalue problem. The second step is to march q in range with the PE a short
distance to x = x0 to obtain

q =j kn`20n(ZO)0n(z)exp(iknxo), (9)

where on (z) and kn are the eigenfunctions and eigenvalues. The normal-mode solution for
q differs from the normal-mode solution forp only by the power of k. appearing as a factor.
As the final step, the power of kn appearing in Eq. (9) is corrected by applying the PE
operator to obtain

N = ol Ij~ + a2j-1Ns, -'OE nl n(Zo)On (z) exp (iknxo)" (10
= Nj=1  + a2j,NS q=1 (

If x0 is sufficiently large (on the order of a wavelength or even less), this approach is robust
because the contribution of the evanescent modes (which compose the singularity) decays
rapidly with range.

The self-starter is easily generalized to the case of a point source. The spreading factor
r-1/2 is removed from p in this case, and the exact (in the farfield limit kor >> 1) starting
field is proportional to

P=X k," 20.(z0)O(Z).(11)

The field is marched out to r = ro, and the power of kn appearing in Eq. (9) is corrected as
follows:

k3/2 ].-wN 1+b b_,Ns
P /2r.I l+b2j-,Ns q =1 k"/ 2 0.(zO) O.(z)exp(ik.ro), (12)

where

( 3 +, --- I-N 1+b2j-1,Ns
- j=1 + b2j,Ns (13)

The values for the Padd coefficients tabulated in [8] were generated using the same

accuracy and stability constraints used to generate the Pad6 coefficients tabulated in [9,111.

2. THE ELASTIC CASE

The following equations of motion for an elastic waveguide are derived from [ 12]:
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82A d

(A+2)---+(,+2/)4+ pA 2A U+2 2W 0 2 dP(+2#V 2 + -V+

(14)

dz dýd zdý d dw -
d2 2 +o p 0W + (;L+U L

&2 -P- d-1A+ Ljuýf 0,(15)

where the dilatation A is the divergence of the displacement vector, w is the vertical
displacement, and A and/u are the complex Lamd constants. Equations (14) and (15) form
a coupled system of equations of the form

L d2 Z- Z.)(16)

where L and M are depth operators. The elastic PE is obtained by factoring Eq. (16) for
x > 0 to obtain

) A (L-IM) 1/2 (j. (17)

Integrating Eq. (16) over an arbitrarily small range interval about the origin, we obtain

lim L = 2. (18)

Substituting Eq. (17) into Eq. (18), we obtain the following generalization of Eq. (5):

L(L-'M)"2 ()'-(-½i6 - Z°)). (19)

The operator square root in Eq. (19) is approximated using Eq. (6) to obtain the following
generalization of Eq. (7):

L + 7a22J.N(LM - 9) (A)(-iik' 6(z - zWor ) (20)+~ +a2,,,(L'M W j 0
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Although Eq. (20) is difficult to solve directly due to the singularity of the solution at
Z = Zo, the indirect method used to solve Eq. (7) generalizes to the elastic case. The first
step involves solving

L(0'M) 2 z - O). (21)

The second step, which reduces the contribution of the evanescent modes, involves
propagating A and w out a short distance in range using the elastic PE. In analogy to the
acoustic case, the solution of Eq. (20) is completed by operating on the field with the
rational-linear approximation for (L-M)I 2 . The self-starter for the elastic PE is easily
generalized to the case of a point source. Since the normal-mode representations for the
line-source and point-source solutions differ in the farfield by the power of k. that appears
as a factor, the final steD for the point-source case involves operating on the field with
(L-IM)31 4 rather than (L-IM)1"2

30-.
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40 --..... Self Starter

50- Reference Solution
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C 80-
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Figure 1. Illustration of the accuracy of the elastic PE self-starter.

To demonstrate the accuracy of the elastic PE self-starter, we consider a problem from [I I
that involves an interface wave and a trapped mode near cutoff. A 5 Hz source is placed at
z = 85 m in an ocean of depth 100 m. In the water column, c = 1500 m / s, p = I g / cm3 ,
and fi=0. In the ocean bottom, cp = 2400 m / s, c. = 1200 m /s, P = 0.1, fis = 0.2, and p
= 1.5 g / cm3. We take N = 5 and r0 = 400 m. Figure 1 contains solutions at z = 85 m
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generated with the elastic PE using the self-starter and using the wide-angle PE starter of
[5]. The solution generated using the self-starter is in agreement with the reference solution,
which was generated using the spectral approach of [ 10]. The solution generated using the
wide-angle PE starter has a large error.
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INTRODUCTION

This report describes the Navy Standard Parabolic Equation (PE) propagation loss model
and its use in predicting broadband transmission loss and time arrival structure of arriving
signals. It also describes and discusses the PE WORKSHOP II test cases.

Section 1 derives the Parabolic Equation, beginning in this case with a broadband wave
equation rather than the cw Helmholtz Equation. Section 2 defines procedures used to
predict broadband transmission loss and time arrival structure with PE.

Section 3 describes the prediction of time arrival structure with the Navy Standard PE
Broadband Post-Processor. Several example test cases are given, including an isovelocity
environment, a CZ environment and a ducted precursor environment.

Section 4 describes the 6 PE Workshop II Test Cases, and PE performance on these test
cases. Recommendations for upgrades to future versions of the Navy Standard PE are
made.

The authors of this report are grateful to Ruth Keenan for supplying Sections 1.2 to 1.4, and
for general advice and editing assistance.

SECTION 1: PARABOLIC EQUATION DERIVATION

In this section, we show the derivation of the Helmholtz equation from Maxwell's
equations. Where many PE derivations begin with the Helmholtz equation, we will begin
with a wave equation derived from Maxwell's equations which does not restrict
propagation to narrow band (cw - continuous wave), as an introduction to the broadband
discussion.

1.1 Maxwell's Equations to Helmholtz Equation

We begin with a general wave equation for electromagnetic propagationl derived from
Maxwell's equations,

d32 '' d32 'I •2 •LIA 1 d2 'l --p
-z•r + I c2 2 T 4r-p- (Maxwell 18.26)
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where

Sis the pressure field in (ry,z,t)
r is range (the x-direction) along a radial,
y is the direction perpendicular to the track,

z is depth,
c is the speed of sound,
t is time,

and
p is the density of the medium.

The first approximation made is the far field approximation. In the far-field the term p/4 xr2

is small enough to ignore, so we will set the right side of this equation to zero:

d•2 'I d 2 P T d 2%p 1 d2'_
-r- +-- + -z- 2 - c--2d 0  (1)

This equation now shows another property of far field propagation. The energy now
propagates as plane waves, not spherical waves, since the second derivative of the
components of the field is zero. Now, if we can assume that energy is at a single frequency,
then we can let

S= Wei", and

d2%p = i2 C02 Vrelt _-W2 Vrei~at

dt2

where
co = 29fe= cok,
-.(02 Wyei•x = -co02k2 W~ei(&

Clearly,
d 2%P d 2 W d 2Ti d2 Wdipd2 o=-'v -r -

so dividing both sides of Equation (1) by ei0m , we have

dv+ d2W+ 2!W+ k2 n 2 V -2d 2

where n is the index of refraction, -. Assuming no out of plane scatter, d 0, and
c(z)

d2  + 2  -05 -,i +rk2n2

which is the Helmholtz equation.
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1.2 Helmholtz Equation to Parabolic Equation

This section and Sections 1.3 and 1.4 were adapted from a document prepared by Ruth
Keenan of SAIC, and are part of her ICECAP documentation2 .

This very simplistic and abbreviated introduction to the parabolic equation, Fourier split-
step method is intended to give the reader an appreciation for its mathematical foundations.
This discussion is based on Ruth Keenan's notes from a "bag-lunch" presentation Rob
Greene gave many years ago, possibly around 1979, at SAIC. For more detailed treatments
the reader is referred to Tappert3, Lee and McDaniel4, Jensen and Krol5 and McDaniel6 .

We first rearrange the Helmholtz equation, equation (2) as:

{-+[2i d2k 2n2]}I(r, z) 0dr2 I Z2 11(2)

The solution to the Helmholtz equation represents a complete, full wave solution to the
wave equation for harmonic solutions. We want to rewrite the Helmholtz equation in a form
conducive to the derivation of the parabolic equation, so consider the identity

(a 2 + b2 ) = (a + ib)(a - ib).

If we let a = r and b d + k2n2 , then equation (2) can be rewritten in the form
of equation (3):

[d +{ d +k k2n 2J121 Jk 2 +k 2n2J 1/2y= o .(3)

The first term represents the backward propagating energy and the second term represents
the forward propagating energy. The first limitation we impose on this solution to the wave
equation is that only forward propagating energy is considered.

_, +k2n 2)1/21= 
(4

The key to solving equation (4) is to approximate the square root operator. First, simply
rewrite this operator in the form of (5)

dl/ 2 "1/2

(..." +k2nl2) z= [d+2 ]n2-1+

= [l+ ! . + n 1],
P E = W o r k s hok 2" 

1 72
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so that we can easily apply a Taylor series expansion ((I + x)1/- 1 + x/2), so that

d2+ k 2n 2 12 =_.k 1+ 1 dk 2 +o ' (2(6

Substituting the right side of equation (6) into equation (4) results in the expression

-rdV_ _ k + lk (n2 (7)

dr2k dZ2 2(n)

Now, if we let Vbe modulated by a slowly varying envelope function

Vk= eikr (8)

and substitute this expression in equation (7), we have

dO .koi[k+I d2 +k (n2_1)]0=. (9)Tr 12k z 2 I

the ko terms drop out to yield the standard form of the parabolic equation,

do =, I2• d 2 + k n2 _-1 0=0. (10)

d [2kdz 221

1.3 Example of PE Angle Limitations
The Taylor series expansion of the operator in equation (6) limits the accuracy of the
solution to a narrow aperture. Consider the simple solution

V = ei(ar+fz) (11)

for an isovelocity (n=1) environment. The Helmholtz equation, equation (1), reduces to the
familiar equation for a circle (which is why it is called the elliptic wave equation),

+r2 +2 +k2 V=0 (12)

-a 2 - 12 + k2 =0
k2 = (a2 + p2).

On the other had, before the slowly varying envelope is removed from the parabolic
equation, Equation (7), reduces to an expression for a parabola;

iV= ikV+ -_p-2 V] (13)
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2 ~ P2 .
r=k-); k=a+-

2k 2k

To evaluate the effect of this difference, consider the case k=l (k = oico = 1 implies
evaluating this expression at about 238 Hz given a 1500 m/sec sound speed). Then

aelliptic _ (If 2 ); parabolic (14)

The propagation angle,6, is defined as, tanO = fl/a The following table (Figure 1-1)
examines this discrepancy with angle of the parabolic approximation for this case if we take
the elliptic expression as ground truth.

b a Elliptic a PE 0 Elliptic 0 PE Error

0.1 0.99 1.00 5.74 5.74 0.00

0.3 0.95 0.96 17.46 17.44 -0.11
'... ...... ....

0.5 0.87 0.88 30.00 29.75 -1.04

0.6 0.80 0o.82 3.9 36.20 <-2.-50s
0.7 0.71 0.76 44.43 42.84 -5.72

0.8 .60 ,6849.64

0.9 0.44 0.60 64.16 56.54 -36.50

0.0'0 0;50 90f' 63.44 CNkt

1.1 N/A for 0.40 Imaginary 70.25 Can't Compute
Elliptic Angles

1 N/A for .28 . Imaginary.76.37 Ca~t Co e~
Elliptic Agles

1.3 N/A for 0.16 Imaginary 83.21 Can't Compute
Elliptic Angles

14 N/A for 00 inaginary, 89.19 Can't Coniptit
Elliptic A~ngles'

Figure 1-1. Parabolic approximation error.

PE Workshop 11 179



PE Workshop H: Part 2 - Test Case Remits

1.4 Fourier Split-Step Solution to PE

For simplicity in notation, rewrite the standard form of the parabolic equation as

do = i [A(r,z) + B(z)]o (15)
1r

A= [n-1 B= 2 kzd2

Rewrite equation (15) as

o = i [A + B]dr (16)

and take the integral of both sides

f 2 = iJ[A + B]dr (17)

r+Ar

In +Ar+= i f(A+B)dr
r

r+Ar

In t(r + Ar) = i f(A + B)dr + In #(r).
r

To remove the natural logarithm, exponentiate both sides of equation (17)

O(r + Ar) = exp[iJ(A + B)drJo(r) • (18)

Assume the integral varies slowly enough so that the approximation
fr+Ar

Cdr = CAr (19)

is valid, and

*(r + Ar) - exp[i(A + B)Ar]o(r) (20)

Now, assume we commute the operator

ei(A+B) = ei/' 2 eiBeA2

This introduces errors that depend upon Ar, frequency and the index of refraction, n. The
error can be kept small if Ar is decreased.

4(r+Ar) = exp(iAAr/2) exp(iBAr) exp(iAArI2)0t(r) (21)
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The solution to equation (21) is conveniently found by Fourier transform methods, which
start with a known pressure field at the source and march forward with a range step Ar.

A property of Fourier transforms is that the Fourier transform of the depth derivative is the
same as a wavenumber multiplication of the Fourier transform7.

fPx) = g f g(y)eu~ydy (22)

g(y) = I f f(x)e-aydx

T[f(x)] = g(y)

N~df(x)] = I-f--g(y)e'ydy

= iyF[f(x)]
It follows that the second derivative can be expressed as,

F1 dX2f] = -y 2 1[f(x)] (23)

The application of this property to the parabolic equation is a bit more complicated because

the second derivative is part of the exponential operator,

V = eiArBO(z) (24)

V = e 2k° 2 J(Z)

If the exponential term is broken up into it's power series expression,

[ex = I + x + x2/2! +...]
then we see that equation (25) is a direct application of the Fourier transform property
expressed in equation (24)

2w 2k (25)J eiL2 kz J"p(l)e-i'dl = e 2k FI[(z)]

Using this property

O(r + Ar, z) = e &F- e2 2]FieL•&/2 (rz)}] (26)
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thus, the solution is conveniently found by Fourier transform methods, which start with a
known pressure field at the source and march forward with a range step Ar following
algorithm (26). A by-product of the Fourier split-step solution is that the pressure field is
computed at each depth mesh point, thus the full field transmission loss displays do not
require an extra computation time.

SECTION 2: BROADBAND TRANSMISSION LOSS

We define cw propagation as energy traveling at a single frequency. That is, the frequency
spectrum of the cw signal consists of a single delta-function. This is only an approximation
if the length of the signal is finite. For example, the spectrum of a time-limited cosine-
shaped signal is a sinxlx pattern (shown in the Figure 2-1). The longer the signal duration,
the narrower the sinxlx pattern will be, and the shorter the signal, the broader the pattern.
However, most PE models treat this signal as if it actually has zero bandwidth.

Figure 2-1. Spectrum of Time-Limited CW Signal

One way to model a real broadband signal is to integrate the Helmholtz Equation (2) over
frequencies in a band:

k2[dý • !2+ + kjn2 V4ko=0

It can be shown that the integral carries through to the Split Step Algorithm (Equation 26),
and therefore the output from PE can be integrated to simulate a broadband signal. Some
methods of processing broadband information are shown in the following diagram, Figure
2-2.

The leftmost branch of Figure 2-2, travel time computations, is the subject of Section 3.

Hanna and Rost8 suggested a method in which a single PE run is made at the center
frequency of the band and the results are averaged in range and depth. The amount of range
and depth averaging needed depends on the center frequency and the bandwidth of the
signal. For this method, the range and depth averages are given by:
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Ar> 1OO0

and

AZ Af
Z F

where
Ar is the length of the range average window,

Az is the thickness of the depth averaging layer,
A is the acoustic wavelength,

Z is the depth at which transmission loss is needed,

Af is the bandwidth
and

F is the center frequency of the band.

W(range,depth,frequency)

for travel time for transmission loss

TL(time) = F{ ((frequency)) I
using I freq using multiple

frequencies

Ianna-Rost Range/depth average

coherent incoherent

TL = 20logIJV(f)*S(f)dfl O TL = l~log-[l(fA21S(f)2djf

Note: S(f) is coherent source function

Figure 2-2. Broadband Processing Methods

The second approach, recently implemented as a post processor to the Navy Standard PE
Model, is an incoherent average across the frequency band, in which the PE pressures at
each frequency can be weighted by the source level S(j):
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fl

f (PE Intensity(f))*IS(f12 df (27)
f2

A coherent broadband calculation is similar to the incoherent method, but PE complex
pressure is integrated against the source complex pressure.

SECTION 3: BROADBAND PE FOR TIME-ARRIVAL STRUCTURE

3.1 Theory of Fourier Synthesis

The output from the Parabolic Equation can also be used to predict time arrival structure.
This is made possible by the Fourier identity:

P(t) - f)
where

t is time (seconds)

f is frequency (Hertz)
P(t) is complex pressure as a function of arrival time,

and

P(f) is complex pressure as a function of frequency.

Intensity vs. time is then computed simply as the magnitude squared of the complex pressure.
The approach to computing time arrival structure is to run PE at a dense set of frequencies
across the frequency band of interest, saving complex pressures at discrete ranges and depths.
Complex pressure is then used to produce pressure as a function of frequency for a given
range/depth pair. Since this algorithm provides relative travel time and not absolute travel
time, there is always some ambiguity due to the FFT wrap-around property. Absolute travel
time, then, must be defined as:

tabs = to + t + nT for n = 0,1,2...
where

to = RIco

R is range
CO is the reference sound speed

t is relative travel time and
T is the length of the signal.

Note that to can easily be added into the results of the frequency-to-time Fourier transform.
In ordei to amnple the frequency band adequately, a frequency increment no greater than 1/
T must be used. If the total length of the arrival is unknown, T can be estimated in a
conservative fashion by computing the minimum and maximum tinic needed to cover the
range from source to receiver. The conservative maximum travel time is computed using the
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steepest "ray" (Omax) propagating at the minimum sound speed CO, and the minimum time
is computed using a 0* ray travelling at the maximum sound speed C,,,:

R R
Tmax = Rm, where Cin = Cocos(Oax) and Tndn = maR

3.2 Simple 2-Ray Test Case

This test case involves a flat bottom, isovelocity environment. The fixed point depth for this
case is 4000 ft and the beamwidth is 20%. In order to examine the direct ray and the 20"
surface reflected ray, a quick calculation with simple geometry was performed to show that
the rays should intersect again at 3.6 nmi at 4000 ft. In the following equation, rl is range
to the surface in feet for the 20° ray, so total range to the 4000 ft depth is 2 *d.

4000
Stan(200 )

5.0- nge (nm)

4.0 - -- " 3.5

V

3.0 3.6

E

2 .0 - 3.7

z
1.0 - 3.8

0.0 13.9

Time (see)

Figure 3-1. Broadband output for 2-ray case.

With a 5000 ft/sec sound speed, the arrival times of the two rays should differ by 0.28
seconds. PE was run over a 100 Hz band with 0.5 Hz resolution. This provided 2 seconds
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of arrivals with a 0.02 second time resolution, which is more than sufficient for this case.
Figure 3-1 shows the broadband output at 3.5, 3.6, 3.7, 3.8 and 3.9 nmi. Note that the time
spread between the two arrivals at 4000 ft is indeed 0.28 seconds.

3.3 CZ Time-Arrival Structure

The next test case was a CZ environment with a flat bottom, as illustrated in Figure 3-2. To
evaluate the arrivals for this case, the broadband computation was carried out at several
ranges and depths along the track. Figure 3-3 shows arrival time vs. range for the 5000 ft
depth. This type of output is instrumental in examining the moveout in time of the arrivals.

0

2000

6000 o

1800 -0
LU

1200011 --

14000 --

16000 r

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

RANGE (NM)
Figure 3-2. Raytrace for CZ test case.

The time arrival structure is shown on the left hand side of the plot. The next graph plots
the time arrival of strongest TL peak. This graph is used to illustrate the FFT wraparound
property of the broadband computation. Note that the arrival times have been adjusted to
show absolute travel time. The time of maximum arrival graph is useful in tracking arrivals.
When arrivals move out (as a function of range) to the maximum time and then quickly
transition to the minimum time, this is indicative of the effects of the FFT wraparound
property on the arrival and does not generally indicate a new arrival type.
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Rane (nm)
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28
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0.0 1.0 2.0 3.0 4.0 5.0 1.0 5.0 0.0 2.0

Tin* of Max. Max TL(Range)
Time (sec) TL(Range) (X 10- -4)

(SEC)

Figure 3-3. Broadband arrival structure for CZ test case.

The amplitudes of the time arrival structure are normalized to the maximum amplitude at
each range. Thus, the peak amplitude vs. range graph shown on the right hand side of the
plot is necessary to compare amplitudes at different ranges.

The time arrival plot for this environment is very informative in evaluating the arrival

structure. At 20 nmi, the 5000 ft depth is within the shadow zone. Note that an arrival is
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shown early in time and as range increases moves out in travel time. This arrival relates to
upgoing rays. Looking across to the maximum amplitude plot, we can see that this arrival
is very weak, consistent with diffracted energy. This illustrates the usefulness of a full field
model broadband computation, as ray traces traditionally cannot model diffracted energy.

The energy of this peak slowly increases as the edge of the caustic is approached. The
arrival at 24 nmi represents the intensity of one upgoing ray. The maximum energy
increases sharply at 25 nmi, just at the edge of the caustic. This arrival represents two or
more rays (the caustic) which have travel times very close to each other.

At 26 nmi, the maximum intensity falls back down as the range from the caustic increases.
Note that the maximum energy decreases slowly until 30 nmi is reached. At 30 nmi, the
5000 ft depth is again within a shadow zone and the arrivals seen represent diffracted
energy. Note that from 30 to 33 nmi there is a double peaked arrival. It is difficult to
ascertain what causes this, but it is most likely energy diffracted from rays with slightly
different travel times. The variation of intensity outside of the peak at 30 to 33 nmi, is due
to the fact that the intensity of the peaks is so low, that we are in the realm of computational
noise. Note that this is also true of the previous shadow zone at 20-21 nmi.

At 32 nmi we are beginning to see a new arrival, which is diffracted energy from the
downgoing rays. This energy will reach the 5000 ft depth sooner than the upgoing rays
which travel deeper in depth and thus take longer to reach that depth. At 33 nmi, the energy
from the upgoing ray completely disappears from the problem, a fact that is verified by the
ray trace.

The intensity of the downgoing rays increases sharply at 35 nmi, the edge of a caustic, and
the increase is again due to two or more rays with the same travel time. Note that the
intensity levels (as illustrated on the right-hand plot) are higher than they were at 24 to 25
nmi. From the ray trace, shown in Figure 3-2, the energy from the downgoing rays is more
focused than the energy from the upgoing rays at 24-25 nmi.

As the energy decreases from 37 to 39 nmi, we can see from the ray trace that we are again

entering a one downgoing ray region.

3.4 Ducted Precursors

Ducted precursors have been observed in data and modeled by Spofford and Keenan9'1 0.
Ducted precursors are generated from modes trapped within a surface duct. Each mode
trapped in the surface duct leaks energy below the duct which travels as a CZ and/or bottom
bounce path which couples back into the duct.

If the ducted energy has a group velocity greater than the CZ energy, the first ducted
precursor arrival will be from energy which has leaked out of the surface duct, traveled as
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a CZ or bottom bounce path for exactly one deep cycle, and then leaked back into the duct.
The energy is coupled below the duct at a 0* grazing angle at a depth where the sound speed
equals the phase velocity of the mode trapped in the duct, and the decp cycling energy may
be either CZ or bottom bounce. If the range between the source and receiver is great enough
to accommodate multiple CZ or bottom bounce cycles below the duct, then higher order
precursor arrivals will be observed. This third test case was designed to model ducted
precursors.

Our SVP was designed with high-sound-speed, strong, 250 m duct, as illustrated in Figure
3-4. By running MPP, we saw that the predicted travel time difference between the ducted
paths and the CZ paths was about 1 second. The ray trace in Figure 3-5 shows the ducted
and CZ arrivals, but a ray trace cannot predict the leaky ducted precursor energy. PE was
run with a center frequency of 58 Hz and a 90 Hz bandwidth, with 0.3 Hz frequency
resolution to yield about 3 seconds worth of arrival data.

The broad band post-processor was then run for a source at 300 ft, which is well within the
duct (Figure 3-6). The first arrival in the 76-80 nmi range is the ducted energy and the CZ
energy arrives about 1 second later. The two arrivals in between represent the ducted
precursors of orders 1 and 2.

Although a ray model does not predict ducted precursors, it can be used to estimate ducted
precursor arrival times and to validate a broadband model such as PE. In this case the
arrival time of the first CZ-type ducted precursor at 78 nmi is:

Tap(n) = Td- n*Trd + n*Tdc

where:

Tdp(n) = arrival time of ducted precursor of order n
Td = arrival time of ducted only path

Trd = time the ducted only path would require to cover the horizontal range of
the deep cycling path

Tdc = arrival time of the deep cycling path (either CZ or bottom bounce) path

The intensities of the arrivals are relatively low from 70-75 nmi, with the ducted precursor
arrival stronger than the CZ arrival. Within this range window, the CZ energy is within the
shadow zone and the CZ arrival is due to energy that has been diffracted into the shadow
zone. At 76 nmi, the CZ energy is dominant over the ducted and precursor arrivals.

The relative amplitudes of the ducted path and ducted precursor paths are dependent on the
range, geometry, and reflection coefficients of the trapped modes. In this case the
amplitude of the ducted arrival is less than that of the ducted precursors and the CZ arrival.
The amplitude of the first order precursor is greater than that of the second order one in this
case, but this is not a generalization for ducted precursors.
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Figure 3-4. SVP for ducted precursor test case.

0

.€ 8000
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Range (nm)
Figure 3-5. MPP raytrace for ducted precursor test case.

The arrival time structure was computed below the duct at the 1000 ft depth (Figure 3-7).
It is interesting to note that the second ducted precursor is still in evidence in the CZ shadow
zone ranges with the same time lag behind the CZ energy. This represents energy that has
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leaked out of the duct and contributed to the below duct field. Again the relative amplitude
for the whole arrival is low with the shadow zone and at 75 nmi, where the direct CZ energy
comes into play, the ducted precursor arrival is masked out by the amplitude of the CZ
arrival. At 77 nmi, the presence of two CZ "rays" with similar travel times is indicated by
the double peaked arrival.

- Range (nm)

70
71
71

* 73
73

A 74
E. 74 "

75

A 75_ -

76

z A77

77

78 -

A A 79

79

0 20 3.0 0.0 2.7 0.3 0.6

Time of Max. Max. TL(Range)
Time (sec) TL(Range) X(10-.04)

Figure 3-6. Broadband arrival structure for in-duct receivers.Depth = 333.337 ft.
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Figure 3-7. Broadband timc arrival structure for out-of-duct receivers.

SECTION 4: WORKSHOP II TEST CASES

4.1 Introduction

All 6 of the test cases supplied for the ONR PE Workshop U were run using either the Navy
Standard PE, Version 3.211, or a developmental copy of PE Version 3.3. Version 3.3 was
chosen for some test cases because the presence of several upgrades in Version 3.3
facilitated creation of input files, and made evaluation of the test cases easier:
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* input of absolute sound speed in the sediment, rather than sound speed relative to
the sound speed at the bottom of the water column.

* input of attenuation in units of dB/X instead of dB/foot.

* semi-coherence in the short-range, steep angle TL supplement, STEEP.

For each case, plots of the required transmission loss output are supplied. Runtimes are
included for each case, and are relative to a 386-PC computer with a math coprocessor chip.
All runtimes include I/O time as well as computational time.

Additionally, special problems and opportunities for improvement are noted.

4.2 Test Case Results

4.2.1 Test Case 1

A high angle Lloyd's mirror test case should pose serious problems for a split step PE
model. The Navy Standard version of PE uses the Thomson-Chapman high angle phase
error correction, which provides second-order accuracy in the approximation of the "square
root operator" in the parabolic equation. Nevertheless, we still do not expect accuracy at
the very high angles present in this test case.

This test case lends itself well to two of the upgrades to PE Version 3.3. Figure 4-1 shows
a full field PE plot, illustrating the Lloyd's mirror effect. Figure 4-2 shows the PE
transmission loss and an exact solution for Test Case 1. The Thomson source 12,13

correction, suggested to us by Dr. Fred Tappert and currently implemented in PE Version
3.3 and the OPTAMAS PE model, was used to run this test case. The point of convergence
shown in Figure 4-2 corresponds to 79%, the high angle cutoff for the Thomson source
correction. We expected PE Version 3.3 to have phase problems at the high angles, but
were surprised that the phase information from PE was so good! A plot to a larger range
(Figure 4-3) shows continued good agreement.

The second upgrade to PE was an improvement to the STEEP algorithm which
supplements high-angle transmission with a short-range ray trace. Whereas the current PE
Version 3.2 provides an incoherent addition of all "steep" rays, and adds the result
incoherently to the PE intensity, PE Version 3.3 sums rays coherently within a single order
of bottom bounce, or between a direct path and a surface reflected path. The sum is still
added incoherently to the PE energy. This test case happens to be ideal for testing and
demonstrating this upgrade.

Figure 4-4 shows PE output from a run using a 10" vertical beamwidth for PE energy and
the STEEP post-processor for energy between 10* and 90" Out to the 10 km range shown
on this plot, there is excellent agreement, as we would expect. However, a longer-range
plot, Figure 4-5, shows 1) too much energy at the "edge" of the PE beam, 2) too much
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contribution from STEEP during the STEEP-to-PE transition, and 3) some wavering in the
transmission loss after 40 km.

Figure 4-6 shows the PE solution using a 90( beamwidth, the Thomson source and no
STEEP angle correction applied The mesh spacing for this case was 46.14 f with a
variable range step, and the total run time was 134 seconds on a 386 based machine.

RANGE (KM)
10 is 20 25 30

0

-4 R.

2000

dO 63086972757881 848790 93

Figure 4-1. Test Case I full field plot.
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Figure 4-2. Results for Test Case 1 (over range 0 to 10 km) using
Thomson source correction.
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Figure 4-3. Results for Test Case 1 (over range 0 to 60 kin) using
Thomson source correction.
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Figure 4-4. Results for Test Case 1 (over range 0 to 10 kin) using
STEEP post-processor.
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Figure 4-5. Results for Test Case 1 (over range 0 to 60 kmn) using
STEEP post-processor.
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Figure 4-6. Case 1 results using 900 beam with no STEEP contribution.

4.2.2 Test Case 2

Test Case 2 is the upslope-downslope problem which was adapted from the "Wedge"
benchmark. Figures 4-7 and 4-8 show the transmission loss vs. range at the 20 meter and
150 meter moving point depths.
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Figure 4-7 Case 2A: F =25 Hz, ZS = 100m, ZR =20 m.
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The inputs for this case were tuned, to some extent, using the results from Test Case 3.
Specifically, the thickness of the density transition region was artificially set to 30 feet,
where PE would have chosen a transition region 60 feet thick. However, while this
transition region modification made a significant difference in Test Case 3, it made no
noticeable difference in this test case. The other input which was set to a non-default value
was NTRANS, which was set to 1 to inhibit mesh space "stretching" which occurs
normally for smaller vertical beam widths. A vertical beam width of ±90" was used for this
case, so setting NTRANS to 1 did not distort the vertical beam, but did allow a denser depth
mesh (since the mesh space was not "stretched") for the same 28 transform.

The mesh spacing for this case was 5.5 feet with a variable range step. The total runtime
was 73 seconds on a 386-based computer.
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Figure 4-8. Case 2B: F =25 Hz, ZS = 100 m, ZR =150 m.

4.2.3 Test Case 3

This test case was modified from an ASA benchmark test case by adding a shear speed of
800 m/s in the sediment. The upslope propagation is shown as a gray scale contour plot in
Figure 4-9, and the transmission loss vs. range plots for 30 m and 150 m are presented in
Figures 4-10 and 4-11.

While the Navy Standard PE was used for these test cases, the default inputs for the Navy
Standard PE were not. The non-default input is DENSL, the length of the density transition
region. While the Navy Standard PE produces a default value of about 60 feet for this test
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case, we have input 30 feet for DENSL. This value was chosen to match the original ASA
paper transmission loss. Figure 4-12 shows significant differences in transmission loss for
the two values of DENSL, 30 and 60 ft, and supports Fred Tappert's suggestion that the
Navy Standard PE default for DENSL be reduced by a factor of 2 or 3.

Validation for this test case is limited to running PE for the ASA benchmark case (without
shear), and comparing PE outputs with the ASA benchmark outputs. Except for
transmission loss to points deep in the sediment, the Navy Standard PE outputs match the
benchmark case outputs. When shear was added, only about I dB of difference was
observed.

The total run time for this case was 183 seconds. The mesh spacing was 5.5 ft and the PE
variable range step was employed.
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Figure 4-9 Contour plot for Test Case 3.

PE Workshop 11 199



PE Workshop II: Part 2 - Test Case Results

30

40m

50-S

0

c0 70

Eso
S
C

16 901-

100 , ,

o 1 2 3 4

Range (kin)

Figure 4-10. Case 3A: F= 25 Hz, ZS= 100 m, ZR =30 m.

30-

40
. 50

0 5
.j 60

c0 70S

E go-
I,-

0 1 2 3 4

Range (kin)

Figure 4-11. Case 3B: F= 25 Hz, ZS = 150 m, ZR =30 m.
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30 Case 3 DENSL =30 vs. DENSL =60
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Figure 4-12. Case 3A: F= 25 Hz, ZS = 30 m, ZR =100 m.

4.2.4 Test Cas•e 4

This test case was designed to show the backscattering effects of a seawall. Since the Navy
Standard PE does not operate in a two-way mode, several steps were taken to simulate the
backscattered energy. First PE was run with the IWRMST=I option turned on to save the
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complex pressure field at 3.0 km, the range at which the wall appears, and the computed
complex pressure was saved at range increments of 0.01 km and at all PE depth mesh
points; this accounted for the one-way portion of the problem.

The Rayleigh coefficient was calculated to estimate the backscattering loss of the wall. As
Figure 4-13 shows, the maximum backscattering loss is I 1 dB for incident angles on the
wall steeper than 45". Incident angles on the wall greater than 450 translate to PE
propagating angles of less than 45. For this test case, 11 dB was chosen as the angle-
independent backscattering "coefficient".

The next step was to run PE "backwards" with the field at the wall plus the backscattering
effects as the "starting field". This was accomplished by setting the IWRMST=2 option in
the PE input file and reversing the environment. Subroutine PXTMOD was modified to
read in the complex pressures field from the "forward" PE run, attenuate the energy by I 1
dB on the wall and -c in the water column. Subroutine PXTMOD is a non-configuration
managed routine designed to let the PE user inspect and/or modify the acoustic pressure
field at any set of ranges and depths, so it lent itself well to this application.

The modified field output from PXTMOD was then used as the starting field for the PE run.
Again, the complex pressures were saved at range increments of 0.01 km at all depths for
the backward run. Figure 4-14 shows the TL curves of the backscattered energy (the
"backward" part of the runs only) for the two "moving points."

A small program was written which incoherently combined the complex pressure outputs
from the "forward" and "backward" PE runs. Figures 4-15 and 4-16 show the two-way
transmission loss vs. the one-way transmission loss ("forward") for the two moving point
depths. The solid curve is the two-way TL and the dashed line is the one-way TL. Note that
the backscattered energy tends to fill in the nulls but only raises the peaks by about 1 dB.
This is a reasonable amount of enhancement to the one-way TL, given that the
backscattered field has been properly computed.

The range step was set to 30 ft only to facilitate the combination of the forward and
backwards fields. The mesh spacing was set to 9.23 ft which was a factor of 4 less than the
PE default mesh spacing. The density transition length was set to 30 ft, a factor of 2 less
than the PE default transition length.

The run time for the forward part of the problem was 713 seconds on a 386-based machine,
the high run time due in part to the small range step that was forced for this run. The run
time for the backward part of the problem was 236 seconds, making the total run time on
the order of 16 minutes.
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Figure 4-13. Case 4: Rayleigh coefficient for backscatter.
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Figure 4-14. Case 4: Backscatter components.
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Figure 4-15. Test Case 4A.
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One common difference between range-dependent acoustic models is the way in which
sound speed profiles are interpolated in range. Generally, sound speed as a function of
depth is input to the model at a discrete set of ranges. What models do with this information
varies. At least three interpolation schemes are worth discussing here:
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"* No Interpolation. The Navy Standard version of PE performs no sound speed
interpolation in range. The sound speed input at one range is used until the next
profile is input. Because of this, discontinuities occur at profile region
boundaries, and energy can be "scattered" and wiped out by the bottom.

" Linear Interpolation in Range and Depth. This method is used by some other
versions of Split Step PE including OPTAMAS PE. Its advantage is that there
are no sound speed discontinuities in range. However, straight linear
interpolation in range and depth does not always provide reasonable
intermediate profiles.

" Triangular Interpolation. This method is employed by the MPP (Multiple
Profile Program) ray trace model. It provides for smooth transition between
profiles, and reasonable interpolated profiles. However, it is not completely
automated, and the user must check and possibly adjust the interpolation. For this
reason, triangular interpolation has not been implemented within the Navy
Standard PE, but has been used as a pre-processor which can feed a set of
interpolated profiles to PE. A program called CFIELD performs triangular
interpolation and writes measured and interpolated profiles to the PE Alternate
Sound Speed file.
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Figure 4-17. Case 5A: F= 25 Hz, ZS =100 m, ZR =30 m.

The ability of PE to accept this alternate sound speed file allowed us to run this test case
with interpolated profiles at every range step. CFIELD was supplied with the three
isovelocity profiles at 0., 0.5, and 2.5 km, and provided hundreds of interpolated profiles
between 0.5 and 2.5 km. PE then read the output file from CFIELD, and used this for its
sound speed field.
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The PE results for this test case are shown in Figures 4-17, 4-18, and 4-19. A ray trace from
MPP and a PE contour plot are also shown in Figures 4-20 and 4-21. While the ray trace
shows the reflections from the water-sediment and sediment-basement interfaces, the PE
run is at too low a frequency to see ray-like behavior without imagination.

The depth mesh spacing for this case was 36.91 feet and the range step was set to 0.005
nmi. The total run time for this case was 191 seconds on a 386-based machine.
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Figure 4-18. Case 5B: F= 25 Hz, ZS =100 m, ZR =150 m.
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Figure 4-19. Case 5C: F= 25 Hz, ZS =100 m, ZR = 250 m.
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Figure 4-20. Ray trace for Test Case 5.
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4.2.6 Test Case 6

This test case was designed to compare model results with measured field data. A complete
description of the environment was supplied for this case. Figure 4-22 shows the
bathymetry and sound velocity profiles for this environment. In addition, 32 bottom
profiles were supplied.

Navy Standard PE was used with a user-forced 210 transform size and a 90" beamwidth.
Upon examination of the TL curves produced by using various transform sizes, it was noted
that the curves converged at 210. The acoustic frequency of this case is 15 Hz and at the 0
range the water depth is only 200 meters. PE calculates the depth mesh spacing based on
the maximum water depth, which in this case is 2650 m (at 97 kin). Therefore the default
28 transform size, with a depth mesh spacing of 336 ft, would supply only two mesh points
at the beginning of the track. A depth mesh spacing of 84 feet seemed to be as much was
needed for this case. Further investigation of the computation of the transform size for VLF
cases is warranted and has been an ongoing task.

Despite the complex description of the sediment, PE did not exhibit as much energy
returned from the bottom as the measured data shows. Figure 4-23 shows a field intensity
plot of the energy in the water column and the first 2000 ft of sediment for the first 10 km.
While some energy does appear to be returning from the bottom at short ranges, this
apparently is not enough to predict the levels of the measured data. Figures 4-24, 4-25 and
4-26 show the TL for the three moving points.

The run time for this case was 538 seconds on a 386-based computer.
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Figure 4-22. Environment for Test Case 6.

PE Workshop II 209



PE Workship 11: Part 3 - Contrbute Paper

RANGE (KM)
0 2 4 0 o1

0

5000

......
1000 .80..

1500 S

2DW-

GO10

E 1100

S 120-

0 10 20 30 40 50 60 70 80 90 100

Range (kin)

Figure 4-24. Case 6A: F = 15 Hz, ZS = 30 m, ZR = 88 m.
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Figure 4-25. Case 6B:.F =15 Hz, ZS =30 m, ZR = 112 m.
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Figure 4-26. Case 6C: F =15 Hz, ZS =30 m, ZR = 148 m.

4.3 Conclusions

This set of test cases differs drastically in nature from the 32 "bake-off" test cases which
were used to choose the Navy Standard Range-Dependent transmission loss models. Where
the ASTRAL (ASEPS TRAnsmission Loss) model agrees well with the PE model for most
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of the 32 measured transmission loss test cases, the PE Workshop II tests require at least a
split step PE model, and sometimes more. From this, a question might arise: Can a PE
model which has been tuned to be as fast as possible for operational use, possibly model
high fidelity, heavily detailed environments, and does it matter?

The first part of the question will be answered at the workshop. This report was generated
without benefit of the test case results, but our guess is that for many of the test cases, the
Navy standard PE performed fairly well. Part of this is due to the fact that, while this PE is
used as an operational model, it has been allowed to keep all of its development inputs. For
example, we were able to turn off spherical earth correction and volume attenuation in the
water column, control the PE range step and depth mesh, and extract and modify complex
pressures from the PE field. In this sense, the Navy Standard PE is not just an operational
model.

The second part of the question can be answered with a definite YES. Test Case 1 was a
perfect testing ground for the semi-coherent steep angle TL supplement, and was also used
to test the Thomson source. Both of these upgrades will improve PE performance in short
range situations, and that is very operationally important.

All of the test cases are important to correctly modeling VLF propagation, and Test Case
6, the only measured data case, was impossible for us to model. We learned much about PE
mesh spacing requirements through the test cases, all of which will be used in future PE
upgrades. On the other hand, what we learned about the thickness of the density transition
region may be more academic. In operational situations, it is probable that our knowledge
of details of the environment (such as the exact sediment density, thickness, and sound
speed gradients) will be vague enough so that the thickness of the density transition layer
will not matter. However, as long as run time is not increased significantly, it does not hurt
to implement an upgrade which is known to improve predictions when there is
environmental information to support that prediction.

There are several areas in which the Navy Standard Parabolic Equation model can be
improved without losing its operational usefulness. Since these test cases are all in the VLF
region, run time is thankfully not a large consideration. The major upgrades have to do with
mesh spacing. The following lists upgrades, including the first two which have already
been implemented in the developmental copy of PE Version 3.3, which are indicated by
this set of test cases.

" PE Range Step Restrictions require PE energy traveling at high angles to spend
a minimum number of range steps in each of the water column, the sediment, and
the basement. This avoids energy traveling through important features.

"* For high frequencies and very high angles, a large vertical beam width is not

practical for the operational PE model. Therefore, STEEP is modified have the
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same number of bottom bounces, and for the surface-reflected and direct paths.

" The Thomson source should be implemented and compared with the Test Case 1
exact solution. This is expected to improve high angle predictions.

"* PE Mesh Spacing Requirements include a minimum number of points in the
water column at short range (in the PE near field)
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PE Workshop II: Test Problem Solutions

Finn B. Jensen
SACLANT Undersea Research Centre
19026 La Spezia, Italy

ABSTRACT

This document presents solutions to five out of seven test problems discussed at the PE
Workshop I held in Slidell, LA on 6-10 May 1991. The workshop was organized by the
Naval Oceanographic and Atmospheric Research Laboratory (NOARL) as a follow-up
meeting to the first PE workshop held in March 1981, with emphasis this time on range-
dependent test problems. The original call for contributions (NOARL Memo Ser 124A-
035, dated 18 Jan 1991), defined six test problems, each of which was designed to address
a particular aspect of the general modeling problem: (t) Source beamwidth and angle-
dependent phase errors; (it) Energy conservation in sloping bottom environments;
(iii) Effects of bottom elasticity; (iv) Modeling of backscattered energy; (v) Propagation
through both range-varying sound speed and bathymetry; (w) Comparison with measured
field data. These six test problems are described in detail in the above-mentioned NOARL
memorandum. An additional test problem involving propagation in a leaky surface duct
was discussed on the last day of the workshop. The solution to this problem is presented
here as Test Case 7.

1 TEST CASE 1

A point source placed near a reflecting boundary in a homogeneous medium gives rise to
the well-known Lloyd-mirror interference pattern (Fig. 1.1) for which an exact field
solution is available. The Lloyd-mirror pattern is ideal for checking both the angular
distribution of energy associated with a given starting field and the high-angle capability of
various PE models.

The problem considered here is a fluid halfspace with a constant speed of 1500 m/s. The
frequency is 40 Hz and the source/receiver depths are 350 m and 3990 m. The image
reference solution is shown as the solid line in Fig. 1.2. The dashed PE result was generated
by the Thomson-Chapman PE, which is known to be exact (no phase errors) for a
homogeneous medium. In fact, beyond 1.5 km the PE result is in perfect agreement with
the reference solution. The lower PE amplitude at short ranges is due to an automatic
truncation of the Thomson halfspace source at the first interference null. Numerically stable
results were obtained with a computational grid of Az = 10 m and Ar = 10 m.
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Figure 1. 1 Contoured field solution for Lloyd-mirror problem.
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Figure 1.2 Comparison of image reference solution (solid line) with Thomson-Chapman
PE result (dotted line).
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2 TEST CASE 2

The problem of energy conservation in one-way models was dealt with in considerable
detail in two recent journal articles [JASA 89, 1058-1067 (1991); JASA 89, 1068-1075
(1991)]. This test problem reiterates the issue by considering upslope-downslope
propagation for a 25-Hz source placed at 100 m depth in a homogeneous water column
with a sound speed of 1500 m/s. The water depth is 200 m at range zero, 25 m at 3.5 kin,
and 200 m at 7.0 km. The bottom is homogeneous with a sound speed of 1700 m/s, a density
of 1.5 g/cm 3 and an attenuation of 0.5 dB/X.

We use the COUPLE normal-mode code to generate a reference solution. Numerically
stable results were obtained with a false bottom depth of 3000 m and with 400 stair steps
in range. A total of 90 modes were included in the calculations. The energy-conserving two-
way COUPLE results are shown as the solid lines in Figs.2.1 and 2.2 for receivers at 20 m
and 150 m, respectively. Also shown as the dotted lines are the one-way pressure-matched
COUPLE results, which do not conserve energy. In fact, we see that the one-way results
lose energy during upslope propagation (0-3.5 km) and gain energy during downslope
propagation (3.5-7.0 km). For this symmetric problem, where the up and downslope effects
entirely balance one another, the one-way result is seen to give the correct answer at range
7 km. The maximum level error is 2-3 dB at mid-range.
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Figure 2.1 Comparison of energy-conserving two-way COUPLE result with one-way
pressured-matched solution for a receiver at 20 m.
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Figure 2.2 Comparison of energy-conserving two-way COUPLE result with one-way
pressured-matched solution for a receiver at 150 m.
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Figure 2.3 Comparison of one-way results from COUPLE (solid line) and Claerbout PE
(dotted line) for a receiver at 20 m.
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Figure 2.4 Comparison of one-way results from COUPLE (solid line) and Claerbout PE
(dotted line) for a receiver at 150 m.

As an example of a non-energy-conserving PE, we present results from the Claerbout PE
as implemented in the IFD code. This is again a pressure-matched forward solution, which
should agree closely with the one-way COUPLE results; this is confirmed by the
comparisons shown in Figs.2.3 and 2.4. Numerically stable PE results were obtained with

a computational grid of Az = 0.5 m and Ar = 2.0 m. Clearly, the recently developed energy-
conserving PE's [JASA 89 1068-1075 (1991)] should produce answers in close agreement
with the two-way COUPLE solutions.

3 TEST CASE 3

No solutions were generated for this test problem.

4 TEST CASE 4

Most of the existing PE implementations are one-way models, which only solve for the

forward propagating field. Test problem 4 was included to look at backscattering from a
single stair step in a homogeneous shallow-water duct. The water depth is 200 m out to a
range of 3 km, and 100 m beyond. Water and bottom properties are identical to those in Test

Case 2, and we again consider a 25-Hz source at a depth of 100 m.

We use the COUPLE normal-mode code to generate a reference solution. Numerically

stable results were obtained by including 90 modes with a false bottom depth of 3000 m.
Figure 4.1 displays the COUPLE result for a receiver depth of 95 m, assuming a reflecting
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boundary condition at the source range. The vertical line at range 3 km indicates the
position of the stair step. Note the "noisy" structure on the initial 3 km caused by
interference between outgoing and backscattered field components. These components are
displayed separately in Fig. 4.2, showing that on average, the backscattered component is
10-15 dB lower than the forward propagating field component. Similar results for a
receiver depth of 150 m are given in Figs.4.3 and 4.4. No PE solutions were generated for
this test problem.
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Figure 4.1 Two-way COUPLE solution for a receiver depth of 95 m.
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Figure 4.3 Display of the outgoing (solid) and the backscattered (dashed) components of
the two-way COUPLE solution.
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Figure 4.3 Two-way COUPLE solution for a receiver depth of 150 m.
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Figure 4.4 Display of the outgoing (solid) and the backscattered (dashed) components of
the two-way COUPLE solution.

5 TEST CASE 5

No solutions were generated for test problem 5.
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6 TEST CASE 6

The modeling of experimental data is quite a different problem than the detailed point-by-
point comparisons with accepted reference solutions discussed in the previous examples.
Thus, a test problem involving real data generally reveals more about the accuracy of the
environmental information than about the acoustic model itself. In test case 6 an overly
detailed environmental description was provided both for the water column (three profiles
with 60-100 depth points and with sound speeds given with an accuracy of 0.001 m/s!!)
and for the bottom with 32 geoacoustic profiles along the 100 km propagation track. This
kind of detail easily leaves the (false) impression of being also a highly accurate
representation of the acoustic environment.

The 15-Hz acoustic data were collected for three different source depths (88, 112, and
148 m) and for a receiver at 30 m. Since the source depth dependence in the data was found
to be negligible, we decided to carry out the modeling for just the 11 2-m source. Two PE
approximations were tested: the standard narrow-angle PE (Tappert-Hardin) implemented
in the PAREQ code, and the wide-angle Claerbout PE implemented in the IFD code.
Numerically stable results for PAREQ were obtained with a computational grid of Az =

10 m and Ar = 20 m, while IFD required Az =5 m and Ar = 10 m.

Standard PE. B=0.12 dB.WL
F = 15 Hz
SD = 112 m

7 0 RD - 30 m
70 ~ -0

__ 80.*

go. . 0 ...
-/ : O

1 0 0-

0 20 40 60 8 100

Range (kin)
Figure 6.1 Comparison of measured propagation losses with PE predictions (Tappert-
Hardin) for a sediment attenuation of 0.12 dB/X.

The model results in Figs.6.1 and 6.2 both show levels which are 10-15 dB too low at
longer ranges. Other PE results presented at the Workshop showed the same trend,
confirming the earlier statement that the issue for this test problem is not the accuracy of
the PE model (narrow-angle/wide-angle, energy-conserving/non-energy-conserving), but
rather the accuracy of the environmental model.
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Figure 6.2 Comparison of measured propagation losses with PE predictions (Claerbout).
for a sediment attenuation of 0. 12 dB/X.

What then is the most likely reason for the poor agreement between data and model
predictions in Figs. 6.1 and 6.2? Assuming the data to be well-calibrated and to represent
"ground truth", we will have to reconsider the geoacoustic model. Clearly there is too much
loss in the PE results, which points to the sediment attenuation as being in error. In fact, the
predicted levels are very sensitive to the attenuation in the upper bottom layer (current
values: 0.12 dB/X at the seafloor and 0.27 dB/I at 1.5 km depth). We have tried to reduce
the attenuation by an order of magnitude to 0.012 dB/X and obtained the results shown in
Figs 6.3 and 6.4 for the standard PE and the Claerbout PE, respectively. Here the model/
data agreement is much better, almost perfect for the wide-angle PE in Fig.6.4.

In conclusion, the model/data comparison indicates that the super-detailed geoacoustic
model is inaccurate. Thus the wave attenuation in the upper bottom layer at 15 Hz has been
estimated to be 0.12 dB/X (presumably extrapolated from high-frequency data) whereas the
modeling result shows that a much smaller value of 0.012 dB/X is more likely. Of course,
a lower attenuation of the waterborne sound can also be achieved by increasing the speed
contrast at the seafloor in order to enhance the critical-angle effect. In that case the sediment
attenuation is less important for long-range propagation. In any event, the various ways to
obtain better agreement between model predictions and measured data all relate to the
environmental model, while the accuracy of the acoustic model is less important. This, of
course, just reflects the standing difficulties in actual prediction work: How do we provide
the acoustic model with meaningful environmental inputs? This issue is sufficiently
complex to deserve the undivided attention of a full workshop by itself.
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Figure 6.3 Comparison of measured propagation losses with PE predictions (Tappert-
Hardin) for a sediment attenuation of 0.12 dB/A.
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Figure 6.4 Comparison of measured propagation losses with PE predictions (Claerbout)
for a sediment attenuation of 0.012 dB/X.
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7 Test Case 7

This test problem was introduced on the last day of the workshop, and even though it is a
range-independent acoustic problem, it does reveal serious deficiencies in some PE
approximations. As shown in Fig.7. 1, the test problem deals with long-range propagation
in a surface duct. The source frequency is 80 Hz, which results in only one mode being
guided in the 250-rm deep duct. This mode is a leaky (virtual) mode, which continuously
sheds energy into the lower medium, as indicated by the dashed arrows. Also shown in
Fig.7.1 is one example of a leaky energy path through the deep ocean (turning depth -2700
m), which returns to the surface duct approximately 50 km down-range, in between the first
and the second convergence zone. Hence, assuming the leakage to be significant,
propagation for both source and receiver in the surface duct will consist of purely ducted
energy out to the first CZ, and by interference between the ducted mode and the leaky
energy beyond the first CZ. In fact, the problem gets increasingly complicated as we move
out in range, with an additional leaky arrival appearing after each passing of a convergence
zone.

0 Sd - 25.0

A I

1000.I

.- 2000

06

3000

4000
1470 1530 50 100 150

SV (m/s) Range (krn)
Figure 7.1 Sound-speed profile and associated ray diagram for leaky surface duct problem.
The leaky paths are indicated by dashed lines.

The critical aspect of this test problem is that a small phase error for the refracted leaky path
compared to the ducted path can result in large changes in sound level in the duct beyond
the first CZ. Thus, in the case where the two arrivals (the ducted and the leaky arrival) have
similar amplitudes, we may observe level changes of several tens of dB's between
constructive and destructive path interference.
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The reference solution to this problem for a source at 25 m and a receiver at 100 m was
generated by the SNAP normal-mode code. At 80 Hz there are a total of 78 modes, of which
one is guided in the surface duct. The SNAP reference solution is shown as the full line in
the remaining figures of this section. Note that the transmission loss curve in Fig.7.2 shows
all the characteristic features of this test problem: Single-mode propagation out to the first
CZ (-50 kim) followed by a two-mode pattern arising from the interference between the
ducted mode and a leaky arrival.

60 SNAP /PE F -- 80 Hz
SD - 25 mRD "100 m

70-

80

o 90.-.J

100

110
0 50 160 150

Range (kmn)
Figure 7.2 Comparison of normal-mode reference solution (SNAP) with standard narrow-
angle PE solution (Tappert-Hardin).

Four PE approximations were tested on this problem. Three of these (Tappert-Hardin,
LOGPE, Thomson-Chapman) are implemented in the PAREQ split-step code, for which
numerically stable results were obtained with a computational grid of Az = 3 m and Ar =
50 m. The last PE approximation (Claerbout) was run with the IFD code, which required a
computational grid of Az = 1.5 m and Ar = 10 m.

The results given in Figs.7.2-7.5 show that only the standard PE and the wide-angle
Claerbout PE handle this problem accurately. Both the LOGPE (Fig.7.4) and the Thomson-
Chapman PE (Fig.7.5) predict too low levels beyond the first CZ due to a small relative
phase error between the ducted and the leaky path, which in this case leads to destructive
interference between the two arrivals. We can explicitly show that the prediction error is
due to an incorrect phasing of one of the two arrivals. By changing the sound speed in the
surface duct by just 0.5 m/s and hence altering the phase of the ducted arrival, we obtain
the dotted SNAP result shown in Fig.7.6, which is very similar to the erroneous PE result
of Fig.7.5.
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Figure 7.3 Comparison of normal-mode reference solution (SNAP) with angle-angle PE
solution (Claerbout).
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Figure 7.4 Comparison of normal-mode reference solution (SNAP) with LOGPE solution
(Berman-Wright-Baer).

In summary, it has been shown that one family of PE approximations perform well on this
test problem, while other PE's show severe deficiencies. Specifically, all PE
approximations based on a series expansion of the square-root operator (Tappert-Hardin,
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Claerbout, higher-order Pade' forms) give accurate results, because phase errors relate
directly to the angle of propagation. The other PE's considered here (LOGPE, Thomson-
Chapman) are based on different approximation techniques for the square-root operator,
with the result that phase errors have a complicated relationship to environmental
properties along a given sound path. Clearly, in this case a significant phase error occurs
between the ducted path and the leaky refracted path to cause prediction errors of more than
10 dB in the Thomson-Chapman PE (US Navy Standard Model) and somewhat less in the
LOGPE.
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ABSTRACT

The acoustic wave propagation prediction model IFD (Implicit Finite Difference),
developed in the early 1980's, is based on the solution of a pseudo-partial differential
equation, of which the Parabolic Equation (PE) is a special case. The model is applied to
solve a set of six problems distributed by the PE Workshop Committee. A number of these
problems fall within the capability of this model, while others do not. Nevertheless, the
model will be applied to all of the problems in order to observe its responses. The results
can be used to appraise the influence of the actual ocean physics.

1. INTRODUCTION

Before the First PE Workshop [1], Lee and Papadakis successfully applied numerical
Ordinary Differential Equation (ODE) methods [2] to solve the standard Parabolic
Equation(PE) that had been introduced by Tappert [3]. Even though the numerical results
from the method are accurate, the ODE method is explicit and its stability is conditional.
To relax these restrictions, Lee et al. developed an Implicit Finite Difference (IFD) scheme
[4] to solve the standard PE. This method was implemented into a computer code, labeled
IFD [5], thereby creating a basic model to accurately solve acoustic wave propagation
problems. Later, Gilbert, Lee, and Botseas [6] introduced the wide-angle PE and modified
the IFD code to include the capability to handle wide-angle propagation. An important
feature of the IFD model is its accurate treatment of the bottom boundary condition
whenever this is supplied precisely. To widen the capability of treating boundaries, Lee and
McDaniel [7,8] applied the same implicit difference scheme to specify the conditions for
interfacial boundaries. The increasing uses of the IFD model in the mid 1980's suggested
the need for a clear and detailed documentation of the model. Lee and McDaniel wrote a
book, OCEAN ACOUSTIC PROPAGATION BY FINITE DIFFERENCE METHODS
[9], published in 1988 by Pergamon Press, Oxford, England. This book presents the
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detailed development and properties of the finite difference schemes for the solution of
acoustic propagation problems in realistic ocean environments. The basic properties,
including "problems of consideration", "development of the finite difference scheme",
"treatment of interface and boundary conditions", "step-size analysis", "wide-angle
capability", "selected examples", and a "listing of the computer program", can be found in
Ref. 9.

Since the early development of the IFD model until recently, there have been no changes
in the IFD code. The code has maintained its originality and has continued to provide
accurate computational results within its range of validity. Nevertheless, other desirable
and useful capabilities have been proposed and developed theoretically but are not yet
incorporated into this code.

In this paper we briefly highlight the development of the IFD model in order to indicate its
capabilities in Section 2. Then, Section 3 is devoted to summarize useful enhancements.
Some of these useful enhancements have been expanded and recognized as separate
independent research projects. In particular, two of these research topics are numerical
modeling of three-dimensional wave propagation problems and backscattering. Included in
Section 4 are computational IFD results for a set of six problems distributed by the PE
Workshop Committee. Some of these problems fall within the capability of the IEFD model,
and some do not. Nevertheless, the IFD model was applied to numerically solve all of the
six problems so that we can observe its responses. We feel that these results can be used to
examine the influence of actual ocean physics.

2. THE IFD MODEL

The Implicit Finite Difference (IFD) model solves a representative ocean acoustic wave
propagation, pseudo-partial differential equation in two dimensions (depth and range). In
this paper, we summarize the development of this model so that the readers can sense its
capabilities. For comprehensive details of the entire development, one can consult Ref. 9.

2.1 The Mathematical Model

The IFD model solves the following representative wave equation:

Ur=iko 4 +l+pX )U (1)

where U(rz) is the wave field,

k0 = reference number
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x=n2(r,z)-+1+ d2

and n(rz) defines the index of refraction, the ratio of the reference sound speed cO and the
sound speed c(rz).

The parameters p and q are arbitrary, having specific values according to the different
rational function approximations to the square-root operator. If one chooses p=1/2, q= 0,
Eq.(1) reduces to

Ur = On 2(rz)-1)U+ L d2 U (2)

which is the standard PE introduced into underwater acoustics by Tappert.

Another choice ofp and q is p=3/4, q=1/4, which is the choice suggested by Claerbout [10].

Equation (1), our representative 2-dimensional wide-angle wave equation (Claerbout
coefficients), is a pseudo-partial differential equation. Equation (1) is valid for the
prediction of one-way wave propagation in the fluid medium and in the far-field without
backscattering.

2.2 The Numerical Solution

To develop a numerical finite difference solution for Eq. (1), we express Eq.(1) in an
operator form, i.e.

Ur = LU (3)

where

L=iko 1+ l+pPX (4)L =ik - l+ qx )

A finite difference approximation of Crank-Nicolson type gives the analog of Eq.(3) as

follows:

(I_-I Ar L)Un+I =(I I Ar L)Un (5)

where Ar is the range increment. The numerical scheme, Eq.(5), is implemented by a
marching procedure. The discretation of Eq.(5) by a finite difference scheme results in a
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symmetric, tri-diagonal system of equations which is inexpensive to solve. In addition, the
numerical scheme, Eq.(5), applied to solve Eq.(4) is unconditionally stable.

2.3 The Computer Code

The original code [5] that implements the numerical solution, Eq.(5), was developed for a
VAX 11/780 computer at the Naval Underwater System Center (NUSC), New London
Laboratory. The code was written in the FORTRAN language. In 1989 the IFD code was
installed on a CRAY X-MP computer at NUSC. In view of the increased use of the code
nationwide and worldwide, it is believed that IFD is installed on computers other than the
two mentioned above.

The code is designed to be relatively easy to use and to modify. The code allows users to
supply their own input subroutines, so that their environmental information may be
processed realistically and accurately. Sound speed profiles, initial values, surface and
bottom boundary conditions, plus other factors such as attenuation and density variations
can be user-supplied as inputs. A default value is built-in for the choice of depth increments
in case a user has no other knowledge by which to make a proper choice. Users can request
the use of the narrow or wide-angle formula by supplying the coefficients p and q.
Insufficient bottom information can be accounted for by the code with the application of an
artificial bottom to remove bottom-interacting energy and to make the problem solvable.
References 5 and 9 provide a comprehensive documentation of the computer code.

3. ENHANCEMENTS

A few desirable capabilities have been developed theoretically but are not incorporate into
the IFD code at this stage. Each enhancement can be classified as an independent research
topic. One of these is the extension of the 2-dimensional model to 3 dimensions. Significant
progress has been made in this topic, for which the 3-dimensional model FOR3D [11] has
been developed. One extension of FOR3D is to develop a model for handling
backscattering by means of a marching procedure. Also, not incorporated into the EFD
model is the numerical treatment of the interface between fluid and elastic media, as
introduced by Shang and Lee [121. Another enhancement is the development of a forth-
order finite difference scheme [13] which allows the use of a larger depth step size, so that
computation speed can be improved. Related to the PE development is an enhancement to
pulse propagation.

3.1 A Three-Dimensional Model (FOR3D)

In Eq. (1), the rational function expression comes from an approximation of a square-root
operator, i.e.

E + px. (6)
+ qx
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Lee, et al. [14] applied a different rational approximation to the three-dimensional square-
root operator, to develop a counterpart representative equation of Eq.(1) in 3 dimensions
that accounts for variations in the azimuth (0) variable. Their rational function
approximation to the square-root operator is:

V-I+X+Y =I+IX-1X2 +rY (7)
2 8 2

where 1 r ,z d2  (8)1i dZ2

and

- 1 d2

k=•r 2 do 2

The 3-dimensional wide-angle wave equation that results for Eq.(7) - (9) is labeled LSS
(Lee-Saad-Schultz) equation. The LSS equation has the form

Ur =ik°(- ++(I + X-1X2 +I Y))U (10)

Had the square -root operator ,[I + X + y been approximated by a linear polynomial in X
and Y, Eq. (7) would become

11+ 1x+ (11)
2 2

in this case, Eq. (10) would become

Ur iko( +( +X+I Y)U (12)

This 3- dimensional PE has been introduce previously [3,15,16]

Lee, et al. treated Eq. (10) locally as a first order ordinary differential equation, solving it
symbolically by

-i0(-l+[I+'-x-_ x2+ Y Ar]•
U(r + Ar, 0z, z) = e t([ 2 P)&U(r, , z) (13)

to obtain the acoustic envelope U in the closed interval [r, r+Ar]. A splitting of the
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exponential operator, together with rational function approximations, gives the solution of
Eq. (13) by

U-l (I ,,, , ,,+[, + 1- (i +4 (14)

where 8= -ikoAr" A comprehensive description of the development of the LSS equation
and its numerical solution can be found in [14].

A computer code was developed to implement the approximation of Eq. (14). Since the
compete solution of the LSS equation involves a Finite difference scheme, an Ordinary
differential equation method, and a Rational function approximation for 3- Dimensional
problems, the code is labeled FOR3D. This code is fully operational on a CRAY X-MP at
NUSC. A detailed description of his 3-dimensional development is in preparation, to be
published as a book entitled NUMERICAL OCEAN ACOUSTIC PROPAGATION IN
THREE DIMENSIONS [17]

3.2 Backscattering

In 1985 a numerical treatment of backscattering by a marching procedure was introduced
by McDaniel, et al. [181. The approach involves applying an ordinary differential equation
method to solve the far field elliptic equation locally. This idea led to the development of
solving two PE's in both incoming and outgoing directions. An experimental computer
code was constructed but not finalized for real applications.

Recently Lee, et al. [19] extended the prior formulation to three dimensions. A new
implementation has been developed, whose initial consideration is directed toward 2
dimensions (depth and range) for two purposes: (1) to check the validity of the model
against a known 2-dimensional exact solution, and (2) to investigate physical scattering
effects in a simpler context. The marching procedure based on the PE approach is now
under development for the treatment of both forward and backward scattering [19].

The development to date is aimed at solving a scattering equation

U,r + 2k 0 Ur + Uzz + k(n 2 (r,z)- l)U =O (15)

by first factoring Eq. (15) into an operator expression

+ iko(l + '11-+-X) - + iko(l - +•Vi--) =

(16)
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Then, a numerical marching procedure is developed to solve the operator equation in 2
steps. Symbolically the right-hand-side of Eq.(16) is labeled g(kOr,z,u).

L2 v = g (17)

and

4U= (18)

where

L., = +iko(I - -v+"_) (19)

and

L2 = " + ik0(I + l-,I +-X) (20)

Equations (17) and (18) are equivalent to Eq.(16), which in turn is identical to Eq.(15). The
functional g(ktr,z) is one type of scattering indicator because g(kor,z) is zero if and only
if n(rz) is range independent.

A marching procedure based on a PE approach is under development for handling both
forward and backward scattering. We have outlined the development of our mathematical
model, the solution approach, the numerical solution and progress in the development of
the research code. To date, the marching procedure has been successfully carried out to
handle both weak and strong scattering in the forward direction. The research code has been
tested by application to a problem whose solution is known (WAVES IN LAYERED
MEDIA, second edition, Chapter VIII, by L.M. Brekhovskikh [20]). Results compare
favorably with the exact solution. Research and development of the model will continue in
order to achieve a full capability for backscattering with numerical efficiency.

3.3 Shear Waves

In 1989 Shang and Lee [12] took advantage of the IFD model in order to introduce a
numerical technique that matches compressional and shear waves on the fluid/elastic
interface boundary. A system of parabolic equations was used to represent wave
propagation in the elastic medium, so that the complete development is based on a PE
approach. In the fluid medium, the solution is obtained by the IFD code. In the elastic
medium, the two elastic fields satisfy a system of two parabolic equations. The
compressional and elastic wave fields are related by a system of three equations which were
derived to satisfy the fluid/elastic interface conditions. Research code for this development
was constructed and used to test the validity of the Shang-Lee model by comparing against
a known solution [21]. To improve the code for actual application, an elastic equation
solver must be incorporated; Knightly, et al. [22,231 are engaging in this development. One
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advantage of this approach is the coupling between the fluid and elastic systems, thereby
allowing the combined model to handle range-dependent shear speed in the elastic medium.

3.4 A Fourth-Order Finite Difference Scheme

One of the high-order finite difference methods, developed by Saied [24] for solving the
partial differential equation of the Schrodinger type, is particularly useful for ocean
acoustics. The Schrodinger equation is a parabolic equation of complex coefficients. The
scheme of interest, extracted from a family of methods is the fourth-order method
introduced by Douglas in early 1965 [25].

a2
Recall that the numerical scheme of Eq.(5) involves the operator L and In the IFD
solution, the operator is treated in the following manner:

d2=, 2 g 1 1  u u u (21)-z U =_-.6,2U= -(Uj+1 - 2Uj + UjI) (1

where h = depth increment. The Douglas operator treats this operator in such a way that

-2 1 62 (22)
& 2 1+ ±562

12

Lee and Saied [13] substituted the operator expression, Eq.(22). into the scheme of Eq.(5)
and derived another tri-diagonal system. Experimental computations show that the IFD
code can produce the same results using both the Crank-Nicolson and Douglas
approximations. However, using the Douglas operator, the computation speed is 5 times
faster than using the Crank-Nicolson operator. This enhancement is not incorporated
currently into the IFD code, but it is incorporated into the FOR3D code, because the IFD
solution falls into a special case of FOR3D.

3.5 Pulse Propagation PE

Orchard, et al. [26] developed narrow and wide-angle 3-dimensional time-domain paraxial
approximations to the wave equation for modeling acoustic propagation. The approximate
representative equations are designed to be appropriate for ocean applications that include
pulse propagation with dissipative volume attenuation and variable density. Further work
should be done to connect such results with numerical implementations.

4. TEST CASES FOR PE WORKSHOP II

4.1 TEST CASE 1

The selection of a starting field can play an important role in the results produced by a PE
model. In addition to testing the starting field the geometry of this problem will also test
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the high angle capability of a model.

The environment is a Lloyd's mirror problem. The fluid is a half-space with a pressure
release surface and a constant sound speed of 1500 m/sec. The density is 1.0 gm/cc with no
attenuation. The fixed point depth (source depth) is 350 m with a moving point depth
(receiver depth) of 3990 m. The frequency is 40 Hz.

4.1.1 IFD Results

30
IFD Solution

40 Reference Solution

- 50- Freq = 40 Hz

ZS = 350 m0
-160 ZR= 3990 m

70

LI I

1 00

0 1 2 3 4 5 6 7 8 9 10
Range (km)

Figure 1: Propagation Loss Comparison for Case 1.

4.1.2 Remark

The accurate solution of this problem requires a starter with very wide-angle capability:
moreover, the propagation prediction model must have the capability of handling very wide
angles also. The difference in the figure is due to the inaccurate (40*-angle) starter plus the
fact that the IFD model was not yet improved to have the very wide angle capability.

4.2 TEST CASE 2

This test case is an upslope-downslope problem that is an extension to the Acoustical
Society of America (ASA) benchmark problem. This case is designed to test how well the
models conserve energy in a strongly range-dependent environment. The following figure
defines the geometry and physical parameters of the problem.
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250m

I • - 3 .5 kmnv

7.0 km

In the water the sound speed is 1500 m/s, the density is I gm/cc, and there is no attenuation.
In the fluid bottom the sound speed is 1700 ni/s, the density is 1.5 gm/cc, and there is an
attenuation of 0.5 dB/%. The frequency is 25 Hz, the fixed point depth (source depth) is
100 m, and the moving point depths (receiver depths) are 20 m and 150 m.

4.2.1 IFD Results

30-

IFD Solution

40, .. Reference Solution

50- Freq =25 Hz

" ZS= 100 m
O, 60- :••• ZR=:20 m
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Figure 2: Propagation Loss comparison for Case 2 (Receiver depth =20 m).
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• 60- .ZR- 150m
C

"70-
E
C 0

90-

100-
0 1 2 3 4 5 6 7

Range (kin)
Figure 3: Propagation Loss comparison for Case 2 (Receiver depth = 150 m).

4.3 TEST CASE 3

Recently there has been great interest in extending the underwater acoustic problem to
more realistic treatments of the bottom, including elastic media. This case is an adaptation
of the ASA Benchmark problem to include an elastic bottom.

2• CW WATER

T r 25 H'z •..

200 m

40k BOTTOM oil

In the water the sound speed is 1500 m/s, the density is I gm/cc, and there is no attenuation.
In the elastic bottom the compressional speed is 1700 m/s, the shear speed is 800 m/s, the
density is 1.5 gm/cc, and both the compressional and shear attenuations are 0.5 dB/X. The
frequency is 25 Hz, the fixed point depth (source depth) is 100 m, and the moving point
depths (receiver depths) are 30 m and 150 m.
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4.3.1 IFD Results
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Figure 4: Propagation Loss vs. Range for Case 3 (Receiver depth =30 m).
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Figure 5: Propagation Loss vs. Range for Case 3 (Receiver depth = 150 m).
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4.4 TEST CASE 4

This test case is presented to test the ability of different models to handle the problem of
backscattered energy.

In the water the sound speed is 1500 mis, the density is 1 gm/cc, and there is no attenuation.
In the fluid bottom the sound speed is 1700 m/s, the density is 1.5 gm/cc, and there is an
attenuation of 0.5 dB/I. The frequency is 25 Hz, the fixed point depth (source depth) is
100 m, and the moving point depths (receiver depths) are 95 m and 150 m.TV

T WATER l10M

200 m * 25 Hz

BOTTOM

FO-3.o km -- H

5.0 km

4.4.1 Remark

The IFD model, at this stage, was not fully developed to have the capability of handling
backscatter.

4.4.2 IFD Results

30 •[Original IFD (I -Way Propagation Only)

40- .. Reference Solution

-j 70- p t
C

0I

i 80-Freq =25 Hz

go- ZS = 100 m

ZR =95 m
100 , 1

0 1 2 3 4 5
Range (kin)

Figure 6: Propagation Loss vs. Range for Case 4 (Receiver depth =95 m).
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Figure 7: Propagation Loss vs. Range for Case 4 (Receiver depth = 150 in).

4-5 TEST CASE 5

This case is designed to test the ability of underwater propagation and scattering codes to
handle range variations in the sound speeds in a range-dependent situation.

0 oun Sound speed varies linearly
Speed = in range from 1500 Wes to Sound speed

200 m 150 rn/S 1540 in/Ls 1540 rn/s
T~WýATER

400 m -SEDIM'ENTWAE

600 M ----
BOTTOM

0.0 0.5 2.5 10.0
RANGE (kilometers)
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The bathymetry of this test case can be looked at as a flat bottom of 200 in depth out to a
range of 0.5 km. At that range a downslope section is encountered that drops off 200 in over
the next 2,000 in. The bottom then remains flat at 400 in out to the final range of 10,000 m.

The sound speed structure in the water is not a function of depth but does have a
dependence on the range. It is a constant 1500 m/sec out to a range of 0.5 km. Over the
downslope portion of the bathymetry the sound speed varies linearly in range from 1500
m/s to 1540 mn/s. At a range of 2.5 km the sound speed remains a constant 1540 mn/s out to
a range of 10.0 km. The density of the water is 1 gm/cc and there is no attenuation.

The fluid bottom consists of two layers: the first bottom layer (i.e., the sediment) is a
constant 200 m thick and follows the contour of the water/sediment interface; the second
bottom layer (i.e., the bottom) is a homogeneous layer of infinite depth. The pertinent
physical parameters of these two bottom layers are as follows: The sediment sound speed
is 1700 m/s, the density is 1.5 gm/cc, and the attenuation is 0.5 dB/X. The bottom sound
speed is 1900 m/s, the density is 3.0 gm/cc, and the attenuation is 0.1 dB/X.

The frequency is 25 Hz, the fixed point depth (source depth) is 100 in, and the moving point
depths (receiver depths) are 30 in, 150 in and 250 m.

4.5.1 IFD Results

30-
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40-
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ZR =30 m0

-. 60-
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S70 /E \I\ /

c" 80 /
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Figure 8: Propagation Loss vs. Range for Case 5 (Receiver depth = 30 in).
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Figure 9: Propagation Loss vs. Range of Case 5 (Receiver depth = 150 m).
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Figure 10: Propagation Loss vs. Range of Case 5 (Receiver depth = 250 m).
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4.6 TEST CASE 6

This test case will test the different models against measured field data. The necessary
environmental information is listed in the Department of the Navy, ONR Code 124 (AEAS)
and ONR Code 1125A memorandum Ser 124A-35 dated 18 January 1991. There were
three sound speed profiles measured along the track. The bathymetry is also supplied with
the range in km and the depth in meters. A series of range-dependent geoacoustic
descriptions are also supplied, where the depths are measured relative to the water sediment
interface.

4.6.1 IFD Results

60-

70- Reference Solution

100-

1 10-

ZS:88m

130- ZR =30mr
0 10 20 30 40 50 60 70 80 90 100

Range (kmn)
Figure 11: Propagation Loss vs. Range of Case 6 (Source depth = 88 m).
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Figure 13: Propagation Loss vs. Range of Case 6 (Source depth = 148 m)
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Figure 12: Propagation Loss vs. Range of Case 6 (Source depth = 112 m)
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S. CONCLUSIONS

In recent years it is encouraging and interesting to see so much progress related to PE. Some
developments reported here represent progress in current implementations. Future
enhancements indicate useful capabilities to come. If these enhancements can be
incorporated into the IFD model, certainly the model could benefit more users.
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FastPE, SlowPE, YourPE, MiPE: What are the
Real Issues?
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MAC Systems & University of Miami/RSMAS

Kevin B. Smith & Fred D. Tappert,
University of Miami/RSMAS/AMP
Miami, Florida

1. Introduction

Since its introduction to the underwater acoustics community, the PE model has been used
extensively for modeling the acoustic pressure field in real ocean environments. Over the
years, many improvements in physics, equations, algorithms and databases have been
achieved. The result has been a proliferation of PE models. However, serious issues remain
with regard to what these models represent. Can they be trusted? If so, to what extent, and
for what applications?

Of course, this is an enormously complex and therefore difficult problem that will linger
for years to come. There are no simple answers. Nonetheless, these issues cannot be
discarded since acoustic modeling can significantly contribute to our understanding of
acoustic propagation, leading to improved sonar system performance.

Among classes of PE models, one can identify two broad categories: one devoted to pure
academic research, and another oriented to operational sonar systems. In the following
discussion, both categories will be touched upon in a general way. Finally, in the spirit of
the PE Workshop II, we present the results from a particular PE model, the Miami PE
model (MIPE), together with pertinent discussions of the various test cases.

2. The MIPE Model

During the course of the PE Workshop II, Tappert1 reminisced about the history of PE,
mentioning in passing the "PE model baby book" 2. The MIPE model is a direct descendent
of this now famous split-step PE algorithm (a.k.a. "the dusty old deck"). In fact, in the
earlier years in Miami, the dusty old deck was chosen over another descendent of this PE
model, the AESD version, to become the foundation of what is now the MIPE model. It is
worth noting that the AESD version later became the Navy standard PE model. The dusty
old deck has since been revamped, embellished and vectorized to improve the speed of
execution. A by-product of this effort has been the high-visibility PESOGEN systems.

The name MIPE itself is not precise enough to pinpoint any particular version of the many
Miami PE models that exist at any moment because the Miami models are constantly
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improving in physics and in algorithms toward better efficiency and accuracy at the same
time. Yet another Miami PE model, called the UMPE (University of Miami PE) is
presented here for the first time, introducing a Co insensitive PE model. It suffices to say
that all MIPE models share a common start from the dusty old deck.

The MIPE model presented here is a version derived from the PESOGEN system. It
requires the SKY Warrior II array processor and can run in either a PESOGEN or Sun
system. The results reported here have been obtained from a Sun3/160 equipped with a
SKY Warrior II array process;or.

The most prominent features of this MIPE model are:

"* Split-Step Fourier algorithm

"* Thomson-Chapman wide angle formulation

"* Smoothed density and sound speed between water/sediment (sediment/basement)
interface(s)

"* Wide angle source with wave number domain filter

"* Full FFT transform so that rough surfaces can be treated with the generalized method of
images.

The many other features of this MIPE model, such as the broadband mode, the matched
field mode, the multiple forward scattering mode, the full-wave reverberation mode and the
directional source and receiver mode will not be discussed since the PE II test cases only
address smooth boundaries with single frequency, single omnidirectional source and
receiver.

3. The Real Issues

A pure objective is the mathematical endeavor of solving the acoustic wave equation as
accurately as possible. In the science of ocean acoustics, it is pointless to achieve this
objective without taking into account the ocean itself. Therein lie the complications that
render necessary the various approximations being invoked so that acceptable solutions can
be obtained within existing means. Because of the presence of the surrounding
environments, ocean acoustics must be treated with the inclusion of accurate descriptions
of the ocean as it actually is at any time and place. This is no small task.

On the one hand, it would be nice to verify that, indeed, one could mathematically and
numerically obtain an accurate solution to a well posed problem. However, this is merely
a necessary condition because, on the other hand, the solution also needs to be accurate in
more difficult realistic cases. A success of a well tuned model, for a well posed problem is
by no means a guarantee that reliable predictions can be obtained in more trying situations.
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This point is well illustrated in Test Case 6, where it appears that no model, no matter how
well tuned, can predict the measured data.

The point above raises the question of what accuracy should be required of a solution.
Should more terms or more environmental data be added to improve the solution? And if
indeed the solution is improved somewhat, is it worth the cost? More importantly, will the
improvement be stable or will it become completely chaotic due to uncontrollable
uncertainties in the environment? These, among other issues, indicate that serious thought
needs to be given to this complex problem and that the book is certainly not closed on the
modeling of sound propagation in the real ocean.

By solving the wave equation, one important component of the sonar equation, the
transmission loss (TL) can be obtained. This TL is precisely what is being sought so that
the science of sound propagation in the ocean finds an application in sonar systems. This
important application helps to justify the ongoing research in PE modeling. It is in
operational sonar systems that PE models may prove themselves most useful.

In order for the PE model to be useful in sonar applications, what then is the accuracy to be
required? The answer is well hidden in the difficult task of finding the balance in which the
description of the environment is well matched with the limitations of the physics
underlying a particular PE model and the speed of a particular computer. This assertion
must of course be qualified by the specification of a particular acoustic frequency regime.
For higher frequency applications, oceanic features of the same scale length as the acoustic
wave length will not be available. In this regime, it is wise to seek predictions of statistics.
In lower frequency regimes, sparse descriptions of the ocean environment may well be
adequate as long as one can be satisfied with equally sparse predictions. In neither case will
pointwise accuracy be achievable.

For the above reasons, the MIPE model is not expected to provide TL predictions with
pointwise accuracy, especially in real ocean environments. There are other PE models with
higher order accuracy that might include extra physics such as the propagation of shear
waves. These higher order terms and/or more physical parameters might show
improvements in pointwise predictions in some examples.

This is not to say that the MIPE model cannot provide pointwise accuracy. To within its
limitations, it will provide pointwise accuracy for cases for which the algorithm and
equation have been designed. An example is test case 1, where the Thomson-Chapman
approximation is exact. To within the limitation of the implementation of very high angles,
close to 90 degrees, the MIPE model is shown to have pointwise accuracy. This test case is
a welcome exercise for the verification of various implementation issues. For example,
special care is needed while implementing the k-space symmetry in MIPE because it has
retained the traditional "half-integer" mesh in depth.
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In view of the above discussion, one goal of MIPE is that predictions should have small
uniform errors for all ocean environments. Whether this goal is achievable is debatable, but
certainly pointwise accurate predictions would be far more difficult. Small uniform errors
could be quantified as a "few" dB's. "Few" will vary depending on the applications. Rather,
the emphasis will be placed upon the timeliness of the predictions for it to be operationally
useful.

4. The Test Cases

In all of the test cases that follow, the MIPE model was used with fixed range step Ar and
depth mesh Az. The Ar and Az are obtained by refining the computational mesh until the
solution converges.

There are only a few parameters that need to be adjusted (or computed). First, the mixing
lengths are computed to obtain smooth transitions in the index of refraction and in the
density discontinuities. Smooth transition between layers are crucial in obtaining accurate
and fast solution for bottom limited applications. Second, the bottom boundary condition
needs to be implemented so that numerical artifacts are not introduced and thus
contaminate the solution. Third and last, the wave number filter has to be designed with
care to prevent artificial reflections.

The solutions are presented in forms of plots of TL as a function of range for given source/
receiver depths. Figures 1 through 7 correspond to Test Cases 1 through 7 respectively.

4.1 Test Case 1 - Figure 1

MIPE has pointwise accuracy with the exception of angles close to 90 degrees.

4.2 Test Case 2 - Figures 2a & 2b

The difficulty here (to approach pointwise accuracy) is that the requirement of a mixing
length at the apex has altered sufficiently the environment to affect the solution. The net
result is that pointwise accuracy is not possible.

4.3 Test Case 3 - Figures 3a & 3b

MIPE does not propagate shear waves, but rather treats them as a loss mechanism 3. The
additional loss due to shear wave conversion is 4.82 dB/nmi-Hz. Since shear waves are
treated as a loss, only reflections from the sediment layer are treated adequately. As a
consequence, the prediction of TL can be trusted only when the receiver is in the water
column and when shear propagation is unimportant. When the receiver is in the sediment
layer, the loss prediction is too high.
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4.4 Test case 4 - Figures 4a & 4b

This test case is treated such that the underwater sea cliff is a linear (rather than circular)
feature in a small angular sector in azimuth. We stress that MIPE and its ancestors have
never made the physically unrealistic assumption of cylindrical symmetry. Therefore, there
is no reason to consider a circular wall. The computed field is a coherent sum of two fields.
The forward propagating field obeys the usual PE wave equation, while the incoming field
is coupled with the outgoing field via the effective reflection coefficient computed from
both sound speed and density discontinuities across the cliff. By using the linear model of
the cliff, the rapid oscillations due to the interference between outgoing and incoming
waves are not amplified as the origin is approached and have lesser magnitude than if a
circular feature were assumed.

4.5 Test case 5 - Figures 5a, 5b & 5c

Special code needed to be written for the MIPE model to handle cases 5 and 6 because of
the extra layers. By adding one extra layer, an additional mixing length is required.

4.6 Test case 6 - Figures 6a, 6b, 6c & 6AF (Full field 6a)

By a straightforward extension, a multi-layer capability has been added to the MIPE model.
All three TL predictions are high compared with measured data. There are many possible
explanations. This issue is being addressed by other contributions in the workshop and it is
not being addressed here. The central issue here is clearly the necessary data bases to
support any acoustic model. This creates a sense of urgency for an answer to the balance
between super accuracy in the model output versus the imprecise state of the art of the
available data bases.

4.7 Test case 7 - Figures 7a, 7b, 7c & 7d

Ironically, this test case was believed to be discarded because "it is too easy". It turns out
that Test Case 7 now casts a large shadow in what has been accepted as a standard for
improved solution to PE wide angle modeling. The new "discovery" is not that the
Thomson-Chapman (T- (7) equation cannot produce the correct solution, but that it can only
produce the correct solution within a very narrow spectrum of reference sound speed Co.
In other words, T-C is highly sensitive to the choice of the reference sound speed. The
disturbing fact is that the predicted level is highly Co dependent. While Figure 7a shows
that T-C yields the correct solution with the value of Co = 1482 m/s, Figure 7b shows that
errors as large as tens of dB's are introduced when CO = 1500 mIs. Figure 7c displays the
correct solution obtained from the standard PE (SPE) approximation with CO = 1500 m/s.
We have investigated the reason for this anomaly without being able to pinpoint the causes
for such behavior. Our investigation included mixing various "propagators" (standard and
wide angle) with various index of refraction "potentials" (also standard and wide angle).
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The rational behind this investigation was the search for a regime where the derivative of
the split-step operator with respect to Co is stable. This unfruitful search prompted us to
believe that a CO insensitive equation is now urgently needed. Such an equation has been
described previously 1 . Figure 7d (courtesy of Dr. Jacob Roginsky/RSMAS-AMP) shows
the preliminary results of the wide angle UMPE model where the CO insensitive equation
has been implemented. Indeed, the three TL curves for widely different Co's are almost
indistinguishable from one another, except at ranges in the neighborhood of about 80km.
However, upon closer examination, the absolute level is about 1 dB higher than the
reference. The reason for this systematic shift in level has not yet been found. Also,
extension to range dependent environments needs to be worked out.

5. Discussions

The above section presents results for all 7 test cases where the MIPE model was used in a
semi-research mode. The user is a sophisticated split-step PE modeler with years of
experience. It can be stated that for a given problem, a convergent solution is always
obtainable because the split-step Fourier algorithm is unconditionally stable. Due to
practical considerations, and also due to limitations imposed by the physics, the solution
might not possess pointwise accuracy. The limitations are well known, however, and
mostly environmentally related. The "few" dB's of deviation can be reduced by sacrificing
run time but this "improvement" must be well warranted to justify the increase in costs.

A far more difficult task is to remove the requirement of an experienced operator while
simultaneously keeping the uniform error small with a small execution time. This requires
an adaptive scheme that will be dependent upon the environment in a complicated way.
More than ever, the requirement for a better understanding of how the environmental data
bases influence a particular acoustic model must be addressed so that the latter can be
improved to achieve the goal of fast, reliable predictions of TL's.

Test cases 6 and 7 pose challenges to be addressed by the entire modeling community. Al-
though the Co insensitivity of the UMPE model holds much promise, work needs to be car-
ried forward to address the mysteries of the sensitivity to CO of the Thomson-Chapman
equation and to determine what should be done so that reliable TL predictions can become
reality.
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Figure 2b: Case 2b - MIPE
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Figure 3b: Case3b - MIPE
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Figure 4a: Case 4a - MIPE
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Figure 4b: Case 4b - MIPE
30-

~40-
S O

g50-
0-j o-
~10

E

-90-

100 , ,
0 1 2 3 4 5

Range (km)

Figure 5a: Case 5a - MIPE
30-

0k 40 -

IS

0
.J 0

*i 70-
E

-90-

100-
0 1 2 3 4 5 6 7 8 9 10

Range (kin)

258 PE Workshop II



PE Workshop U1: Part 3 - Contributed Papers

Figure 5b: Case 5b - MIPE
30-

j 50-

" 0-

j30

3 70-

E

I 90

100-
o 2 3 4 5 6 7 8 9 10

Range (kin)

Figure 5c: Case 5c - MIPE
30-

~40-
50

0

50

.100
0 '
aag~m

PEWokho70 5



PE Workshop 1H: Part 3 - Contributed Papers

8
g EE

(M0

FE6r
0)

ui Tqqde8

26 P.orsop1



PE Workshop H: Part 3 - Contributed Papers

Figure 6a: Case 6a - MIPE
60-

So

-J 90 -
a
S100-

Ea 110-
c

- 120-

130-
0 10 20 30 40 50 60 70 80 90 100

Range (km)

Figure 6b: Case 6b - MIPE
60-

~70-

o90-

0

S100-
E
* 110-

P 120-

130-
0 10 20 30 40 50 6( 70 80 90 100

Range (km)

PE Workshop II 261



FE Wirkdkop U: Fart3 - CoaNtrm•d Papm

Figure 6c: Case 6c - MIPE
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Figure 7b: Case 7 - MIPE
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Figure 7d: Case 7 - MIPE
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Impedance Bottom Boundary Conditions
for the Parabolic-Type Approximations
in Underwater Acoustics

J.S. Papadakis
University of Crete and Institute of Applied
and Computational Mathematics FORTH
P.O.Box 1527,
Heraklion 711 10 Crete, Greece

1. ABSTRACT

The different parabolic approximations to the reduced wave equation which model acoustic
propagation in the ocean usually treat the bottom as an interface and the domain of
propagation includes an absorbing layer below the bottom interface. Thus, the boundary
problem to be solved has zero boundary conditions at the surface as well as at the bottom
boundary. In this paper exact boundary conditions are derived for the physical horizontal
bottom boundary. These boundary conditions are non-local but integrable and can be
incorporated in finite difference schemes for the parabolic equations [Ref 1,2,3].

2. PARABOLIC APPROXIMATIONS

By factoring the Helmholtz operator and using a linear rational approximation to the square
root operator we derive the general wide angle parabolic approximation.

l+E(n2(rz)_1)+ 1 d2 ]p

du =-ito I- kdZ 2 J'2 (GW)Tr [(n 21 d 2

where
u=u(r,z) is the acoustic pressure,

A= C is the reference wave number,

f is the source frequency,
Co is a reference sound speed

n=n(r,z) the index of refraction,
p,q constants.

With p=--, q=O we arrive at the standard parabolic equation
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2ikbu,. + uz + kjn 2 (r~z)-l+u=O0 (S)

which we call S-equation and with p = and q = I we arrive at the wide angle Claerbout
equation 4

(4kg + k (n2 -1) + dz2)Ur = i(2k4(n2 -1) + 2kodz2 (W)

which we call the W-equation.

3. BOTTOM-BOUNDARY CONDITIONS

Assuming a horizontal bottom boundary and homogeneous sub-bottom region we derive,
from an impedance formulation, the bottom boundary condition for the S-equation.

u(r, zR) = e"PB jeikO(n2-l~rs)/2(r_ s)-1 uzs(s,Za)ds (IS)

where
z = zB is the horizontal bottom interface and

nB = constant, is the index of refraction for z-ZB
Pw = the density in the water (z:zB)

PB = the density in the bottom (Z>_ZB)

The bottom boundary condition for the IW-equation under the same assumptions is

u(r, z,) =-io tLBu.(z) oLB 4(p-)uzr sýzkeo(p-q)&12
u,~, = iPFu(r, z,) - a jýr-sz

P. p. 2 0(W

Where

a= [ q( )1/22+2 q l 1(4-l)]

Finally, if we assume that the subbottom region supports shear waves the bottom boundary

condition for the S-equation with elastic bottom becomes
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u(r,z =9JZsZB) =JA(AlXr-s)1 2fn -ý e kL+B_)dks (JIFEL)
0 -0

where

+2 n2 -= (,/2.14(n2 -2) k2 + , 4 (n 2 k)" 2 (n2 _;k)1/2

where ks = 2xf I cs, ns = co/cs where cs = the shear speed in the bottom. For a brief
derivation of the above formulas see Appendix A.

4. NUMERICAL ALGORITHMS AND COMPUTER CODE

We apply an implicit finite difference scheme to march the field in the r-direction for both
S and W-equations. We use the same Ar, Az in numerically representing IS, IW, and IFEL
boundary conditions and obtain a computer code which uses either the S or W-equations
combined in the following diagram with the boundary conditions to calculate the outgoing
wave for the Helmholtz's equation.

Equations S

Boundary Conditions IS 1W IFEL

Thus we have the choice of the following codes, S+IS, S+IFEL in the case of narrow angle
propagation and the codes W+IS, W+IW, and W+IFEL in the case of wide angle
propagation.

It should be pointed out that the IFEL bottom boundary condition the analytic transform of
the function can not be calculated and a Fast Fourier Transform was implemented.
However, the function f(n2 - •) to be transformed is singular at 0 and -c. For this reason
at zero a careful analysis has to be applied in order for the singularity to be integrated
correctly (see[3]). At infinity a Hanning window is used to amend the problem.

5. APPLICATIONS

Here some typical examples of sound propagation in the ocean will be presented where an
implicit finite difference code to the parabolic equations S and W will be combined with
numerical codes for the non-local boundary conditions IS, IW, and IFEL.
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Example I This is a well known example suggested by Dr. H. Bucker. The parameters of
the problem are: Water depth 240 m, Frequency 100 Hz, Source depth 30 m, Receiver
depth 90 m, the water density is 1 gm/cm3, bottom density is 2.1 gm/cm3, with no
attenuation. The sound speed profile in the water consists of linear segments as follows: at
0 depth 1500 m/sec, at 120 m depth 1498 m/sec and at the bottom interface (240 m)
1500 m/sec. In the subbottom regions the sound speed is 1550 m/sec.

62 Nra Solid = S+ISS62 ~ ~~--- Normal Mode m6/Dse=Wl

~66 -IFD 65- Dashgd= WIS;
70 70

0 74 7-75

- 78

j82 E

it' go it 90

0 I 10 15 20 20
Range (kin) Range(km)

Figure 1:. The solutions are given by Figure 2: The solutions are given bynormal mode theory and the IFD code by implementation of the codes W+IS and
Lee and Botseas. S+IS

Example II. This example is a case of a range independent environment consisting of an
isovelocity water column. The parameters of the problem are: frequency 250 Hz, water
depth 100 m sound speed in the water 1500 m/sec, density in the water 1.0 gm/cm3, density
in the bottom 1.2 gm/cm3 , sound speed in the bottom 1590 m/sec, source depth 99.5 m and
a receiver depth of 99.5 m, the attenuation in the bottom is 0.5 dB/wavelength.

wide angle example
50- •- ModeO

S60 FFP Go -

70 - : 70 70

190 go90
E E

a

I-110 11 I *

5.0 6.0 7.0 8.0 9.0 10.0 5.0 6.0 7.0 8.0 9.0 10.0
Range (km) Range (kin)

Figure 3: Normal mode (SNAP) and Fast Figure 4: The solution is given by W+IS.

Field Program solutions.
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Example HI. In this example an elastic bottom is assumed. The parameters are: Frequency
500 Hz, water depth 100 m, source depth 50 m, receiver depth 50 m, sound speed in the
water 1500 m/sec sound speed in the bottom 1550 mr/sec, water density 1.0 gm/cm 3, bottom
density 1.2 gm/cm3, bottom attenuation 1 dB/wavelength, shear speed in the bottom 600
m/sec, shear attenuation 0.5 dB/wavelength.

Figure 5 has the propagation loss verses range from the SAFARI [Ref. 9] program and S+IS
code without shear. Figure 6 has the results from SAFARI and S+SI with shear at the
bottom.

40 40-

s50- so-

60- 60 o

80- so

S A I F --- SAFARI100 -•i i I 1 100 - i i i

0 2 4 6 8 10 0 2 4 6 8

Range (km) Range (km)

Figure 5. Fluid case. Figure 6. Elastic case.
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APPENDIX A. Derivation of the impedance conditions for the Parabolic Equation.

We derive the impedance boundary condition for the (GW) equation. The continuity
conditions at the water-bottom interface are

uw(rzB) = uB(rzB) (1)
UW(r, zB) = PB(r (2)

where uw and uB are the function u at the water layer and the bottom layer respectively.

Applying a Fourier transform [Ref. 4] with respect to r to equations (1) and (2) we get the
impedance condition

UW (A,,Z) = PB U8 (A,ZB)

U)w(,zB) pB

where U is the Fourier transform of u. Applying the same Fourier transform to equation
(GW) for Z>_ZB we have

27ri•k• + qk4(n2 - 1) + qdz2 ]UB = i[kq(p - q)(n2 - 1) + ko(p - q)d2z ]UB

which is a second order linear differential equation in the depth function UB(AZB).
Assuming only an outgoing wave as z --*a we arrive at the equation

1/2

2,iA -ikO(p-q)

Uw(,Z) iP-B q
Uzj(A,ZB) Pw k,0_ko(p-q)(n2-1)

Applying the inverse Fourier transform and after some manipulations we derive the (IW)
equation. With the same process the (IS) and (IFEL) equations are derived.
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Coupled Modes for Rapid Range-
Dependent Modeling

Michael B. Porter, Carlo M. Ferla and Finn B. Jensen
SACLANT Undersea Research Centre
1-19026 La Spezia, Italy

Abstract

Normal mode models are widely used for solving range-independent ocean acoustic
problems. The approach generalizes to range-dependent problems by dividing the problem
into a sequence of range-independent segments and using normal modes to represent the
solution in each segment. While this coupled-mode approach has proven extremely useful
for checking other models, it has generally been considered uncompetitive with parabolic
equation (PE) algorithms in terms of run time.

We show that an optimized coupled-mode algorithm is practical and in fact competitive
with the parabolic equation. To develop an efficient algorithm we take advantage of a
widely used finite-difference algorithm for solving the range-independent normal mode
problems. As in PE models, we make the a priori assumption that the field is dominated by
the outgoing component. We also bypass the calculation of mode coupling matrices, and
compute the mode amplitudes in a new segment directly by projecting the pressure field
onto the new mode set. This allows the solution to be constructed by a simple marching.
We illustrate the algorithm using several oceanic scenarios involving range-dependent
oceanographic and bathymetric features.

1 Introduction

A common starting point for ocean acoustics problems is the Helmholtz equation in two-
dimensions:

I d (r +() - (P) 1 dpp to2 -3(z - zs)3(r)
2( r- =~z- - N+ 2 p. (1)

r dr , r 1p(z) dz' c (rz) 2xr"

where p is the density c(r, z) the sound speed and wo is the circular frequency of the source.
This equation must also be augmented with appropriate boundary conditions.

One way of solving the Helmholtz equation is to divide the problem into a sequence of N
range-independent segments in range [1 1 as illustrated in Fig. 1. Then, within each range-
segment the exact solution can be constructed using normal modes as a sum of right- and
left-traveling waves. Neglecting contributions from higher-order modes or from the
continuous spectrum, the general solution in the jth segment can be written as follows:
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p'(r,z)= l[ajHlj(r) +bmH2j(r) (2)

M=1

where HI,2(r) = Ho' 2)(r) are Hankel functions, and k' and Z1 (z) are solutions of the
depth-separated equation:

l()d dZ(Z))+ 1'- 2JZ(Z)o=
dz p(z) c2(z)

Z(O) = 0 (3)

zz(D) 0

dz

ai. bi "ji b1,

r r.1 r+2

Fig. 1 Segmentation for the coupled mode formulation

The bound-,ry conditions imposed imply a pressure release surface located at z=O and a
perfectly rigid bottom located at z=D. Then, imposing continuity of pressure and particle
velocity along each of the vertical interfaces leads to a large block-banded matrix for the
mode coefficients ai and bJm in each segment. The pressure field is then computed by
summing up the modes in each segment as given in Eq.2.

This type of approach has been used in the COUPLE model [1 and successfully applied to
a number of benchmark problems [2,3]. While extremely useful for providing benchmark

272 PE Workshop 11



PE Workshop Ul: Part 3 - Contributed Papers

solutions the direct solution of the Helmholtz equation in this manner is usually not
practical for ocean acoustics problems because of the execution time.

Instead, for range-dependent problems the method of choice is often a PE type solution.
This approach takes advantage of the fact that ocean acoustics problems are often
dominated by just the right-traveling component of the solution, leading to equations which
can be rapidly solved by marching forward in range.

Our objective in this paper is to examine the alternative of using coupled-modes in a similar
one-way fashion. The key question is whether or not an optimized marching solution based
on normal modes is competitive in terms of run-time with existing PE models.

2. One-way coupled normal modes

To obtain the one-way formulation in each segment we seek a solution in the form of just
a right-traveling wave:

M

pJ(r,z) = XaJ Z~m(z)HlJ (r). (4)
m=1

With the range of possible solutions restricted to just the right-traveling component we
must relax the continuity conditions on vertical interfaces. For the sake of comparison with
existing models we have implemented the one-way coupled mode solution using pressure-
matching at interfaces discarding the condition of continuity of particle velocity. However,
as discussed in Ref.[3] this informal step can have important implications for solution
accuracy. A single-scatter type condition yields much improved results and is normally our
method of choice.

The condition of continuity at each interface can therefore be written:

Gj+Iz'+I. I,_ 11 m , (--) XamHlm(r)Zm (5)

P+m=I M = Im=J

Taking advantage of the mode orthogonality we apply the operator:

f -- z, (6)

yielding:
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• M

a -+ X=Ya~iH1i(rj)ZI, l=1 ...... M, (7)

where,
+I (Zsi(Z

-b = Z')Z~ (z dz.- 1 (8)

The denominator in this coupling term is a geometric mean of the analogous terms obtained

using pressure-matching and velocity matching.

In matrix form, Eq. (7) can be written:

ai+1 = CHia'. (9)

Well-polished codes exist for solving for the normal modes in quite complicated
multilayered environments. A popular technique uses a standard centered finite-difference
approximation combined with Richardson extrapolation [4]. The resulting tridiagonal
algebraic eigenvalue problem is solved using roughly 30 M Nz floating-point operations
where Nz is the number of grid points in depth and M is the number of modes calculated.
Typically, M - Nz / 10 so that we obtain an operation count of 3 Nz2 . An algorithm for doing
the one-way mode coupling has been incorporated in two popular implementations of the
modal algorithm (KRAKEN [5] and SNAP [6]. We refer to the one-way version of SNAP
as C-SNAP and will be showing results obtained with that model. Timings and results are
similar for the coupled-mode version of KRAKEN.

The modes calculated by these models are provided on a finely tabulated grid of depth
points. The mth vector is then used to define the mth column of a matrix U'. For an
isodensity problem, we can then approximate the coupling matrix by the discrete form:

C' = ((uJ+I)tui, (10)

which is equivalent to evaluating the coupling integral by the trapezoidal rule. (For a
variable-density problem this equation is slightly modified.) Substituting in Eq. (9) we
obtain:

j+l-- ,iU()

We can describe the steps in this equation as follows: one advances the phase of the
coefficients to the next segment, then one sums up the modes to compute the field just to
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the left of the interface and finally, one projects the pressure field onto the mode set in the
next segment. Computing the coupling matrix would involve the calculation of the matrix-
matrix product (-O+1)t U' but when the operations are done in the order indicated by Eq.
(11), one performs only the operation of a matrix times a vector and therefore obtains a
significant savings in execution time.

Let us consider the alternative PE approach. The pressure field is represented in terms of
an envelope function as:

p(x, z) = ip(x, z)eik~x (12)

where the envelope function then satisfies

dvr n2- + I 2 (1)2

This is the standard parabolic equation originally considered by Tappert [7]. In fact, we
shall be presenting comparisons with a popular implicit finite-difference PE (IFDPE)[8]
which uses a higher-order approximation to the square root operator. The PE equation is
then discretized using a simple centered-finite difference operator. A single range-step then
requires solving a linear system and doing a matrix-vector multiply. The matrices involved
are all tridiagonal so that about 10 Nz floating-point operations per range step are required,
where Nz is the number of points in the depth grid. The complete solution is thus calculated
in 10 Nz Nr operations where Nr is the number of range steps.

When the normal mode problem is solved using the same centered finite-difference
approximation the cost of computing the modes at a single range is roughly 3Nz2

operations. Thus, if Nprof stairsteps are required to define the environment, the total cost is
3Nz Nprof operations. (The final mode synthesis typically uses a small percentage of
additional time, although in cases where many source/receiver combinations are involved
it can dominate.)

Thus we have

lO Nz Nr IFDPE

3Nz2Nprof Normal Mode.

For range-independent environments (Nprof= 1) where the field is desired beyond a few
water depths Nr > Nz the normal mode solution is faster. For this reason normal mode
solutions have generally been favored for range-independent environments.
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However, for range-dependent environments the normal mode calculation must be done in
each segment where the environment is updated. For gradually varying environments a few
updates suffice and the normal mode approach is significantly faster. For strongly varying
environments it may be necessary to use a new profile every wavelength in range. In this
case, the standard PE approach is significantly faster.

The question then is, Jo typical ocean environments vary enough to favor PE solutions or
coupled normal mode solutions? We can give a partial answer by considering some
example problems.

3 Phopagation over a seamount

The enviroament is illustrated schematically in Fig. 2. The scand speed profile is a
canonical deep water profile. Range-dependence in the problem ccmes from an idealized
seamount that is symmetric and extends from 80 km to 120 km and is 1000 m high. The
transmission loss calculated using C-SNAP is shown in Fig. 3 for a souice depth of 100 m
and a source frequency of 50 Hz. In order to obtain a. olution which is sufficiently narrow-
angled that the PE solution is valid, we have -scd a modal starting field retaining only those
modes which are waterborne; that is, turned before hitting the bottom. The field shows a
convergence zone type pattern involving a bea..' of energy cycling up and down the water
column. At a range of about 90 km the beam hits the seamo,,nt and reflects at steeper
angles.

0 km 100 km 200 km

0m-

5000 m.

Fig. 2 Schematic of the seamount problem
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Fig. 3 Coupled mode transmission loss for the seamount problem
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Fig. 4 Transmission loss for the seamount problem at a receiver depth of 300 m (C-SNAP
(-), IFDPE ( --- ) ).

We have also solved this problem using the IFDPE model and obtained a plot that is
visually indistinguishable from the coupled-mode result in Fig.3. A more quantitative sense
of the error is seen by comparing a slice from the transmission loss plot taken at a receiver
depth of 300 m as shown in Fig. 4. We observe that there is excellent agreement between
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the IFDPE and one-way coupled-mode solutions. The execution time for both models is
approximately half an hour on a roughly I megaflop machine (VAX 8600).

4 Propagation over a continental slope

A schematic of the environment is shown in Fig.5. This type of environment is a prototype
of continental slope propagation where the initial 500 m in range represents a continental
shelf. (This problem is a modified version of benchmark problem 5 from the PE Workshop
II [9] with the sediment layer removed to obtain a problem solvable by the COUPLE
program.)

0 0.5 2.5 10km

0m

SC =1500 m/s
200 m

400 m - --..

Fig. 5 Schematic of the continental slope problem.

Taking a source depth of 100 m and the source frequency of 25 Hz we obtain with C-SNAP
the transmission loss shown in Fig. 6. Again, in order to accommodate the angle limitations
of the PE we have chosen to use a narrow-angle source generated using just the discrete
modes at the origin. The field shows a somewhat complicated 4--8 mode interference
pattern. Once again, the IFDPE results (not shown) were indistinguishable in terms of the
grey shade plot
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Fig. 6 Transmission loss for the contih:ental slope problem.
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Fig. 7 Transmission loss for the continental slope problem at a receiver depth of 150 m (C-
SNAP (-), IFDPE ( --- ), COUPLE (-. - ) )

Again to be precise about the level of agreement between the models we turn to a line plot
taken at a fixed receiver depth of 150 m. This problem involves few modes so that we can
also provide an independent check using the full two-way coupled-mode solution
(COUPLE). The comparison of C-SNAP, IFDPE and COUPLE is shown in Fig. 7 showing
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excellent agreement among all three models. As in the previous test problem, the one-way
coupled-mode (C-SNAP) and IFDPE solutions required comparable times (approximately
1 minute).

5 Summary and Conclusions

We have shown that the normal mode approach offers a viable alternative to PE modeling
for range-dependent environments with run-times which, in our test problems, are roughly
comparable. A precise comparison of execution time is complicated by the fact that it is
difficult to define an error criterion which all would agree is meaningful to the user. Which
is more important: accuracy in the convergence zone position or in its level? Furthermore,
there are a number of parameters in each model which can be tuned to optimize execution
time (e.g., source spectrum, range and depth grids, angular width of the PF or modal
spectrum).

In favor of the coupled normal mode approach we note that while much work has been done
to improve PE's little work has been done on optimizing coupled normal modes and,
indeed, there seem to be numerous possibilities for further improvement. For instance,
generalized 'wedge-modes' [101 may allow for much larger range-steps.

Furthermore, the normal mode approach allows multiple source depths to be handled with
negligible additional effort since execution time is dominated by the time required to
compute the modes, a calculation which does not need to be repeated for additional depths.
This benefit is particularly important when matched-field processing is used to localize
sources by scanning over source position (see Ref. [ 11] and references therein).

It seems probable that there will always be a place for PE models. Circumstances favoring
their use are 1) problems with range-dependence along the entire track and 2) problems
where the field is desired on a fine range-depth grid. However, we feel that one-way
coupled mode algorithms offer many possibilities, and suitably optimized may well prove
a more desirable alternative for typical ocean acoustic problems.
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Windowed Transformations and Marching Algorithms
for Localized Phase-Space Representations

B.Z. Steinberg
J.J. McCoy
The Catholic University of America,
Washington DC 20064

Abstract

We consider a wedding of the marching methodology and the phase-space localization. The
result is a new framework in which the propagation process appears as an ordered sequence
of local events. The framework requires a description of that portion of the environment
that effects the localized event only during the "time" of occurrence of that event. Thus, for
example, the events of the interaction with the ocean surface and bottom can be isolated
from the propagation through the water column. The properties of the new scheme are
discussed and demonstrated via test case 1.

1. Introduction

This paper presents a new and different framework to the description of sound propagation
in underwater environments. The framework can be described as a wedding of two
approaches. The first is the sequential ordering of events, governed by the methodology of
marching the acoustic field. This procedure is well known to the community of underwater
sound propagation. The second approach is the description of the field in localized phase-
space formats, governed by windowed transformations. The strength of the wedded
methodology is that it explicitly incorporates the interpretation of sound propagation as an
ordered sequence of local events, thus placing our intuitive perception of the propagation
process in a systematic framework. We anticipate that the framework is of fundamental
importance since it requires a description of that portion of the environment that effects the
localized event and only at the occurrence of that event. Thus, for example, the interaction
of the acoustic field with the ocean surface and bottom can be isolated from the propagation
through the water column. Also, processing of wave data like simultaneous spatial and
directional filtering (imposing local radiation conditions) may be systematically performed
in a local fashion. These properties further suggest that this is a natural framework to march
fields in range dependent environments since certain "turning around" events are confined
within regions in phase space that are known a priori.

2. Range and Cross Range Localization

First, short comment regarding terminology. Many of the methods for tackling wave
problems are based, in one way or another, on either spatial or spectral description of the
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field. Spatial being a description of the field as a spatial superposition of Green's functions
and spectral being a description of the field as a superposition of plane-waves or modes.
Both representations are global: point sources radiate to all directions, plane waves or
modes occupy the entire domain. Accordingly, The entire domain of the problem must be
incorporated into each propagator before applying the synthesizing integrals. There is no
way to assign a priori specific wave events in the medium to specific propagators and vice
versa.

One-way wave theory and the methodology of marching the radiation field offer an
alternative route to the global approaches [ 1,2]. Clearly, it is the explicit sequential ordering
that makes the marching methodology a tool of vital importance. Events in one cross range
plane are completely determined by the events in the plane preceding it, and the separation
between the planes may be made as small as one wishes. The range direction, therefore, is
treated locally. The implementations of this approach, however, are global in the cross
range direction exactly in the sense discussed above.

Phase-space beam representations are new techniques that naturally lend themselves to an
inherent simultaneous spatial and spectral (or directional) localization in the transverse
direction. The techniques have been investigated and discussed thoroughly in [3]. We shall
briefly summarize the approach. A scalar time-harmonic acoustic field u(xz) satisfies the
Helmholtz equation in a two dimensional medium (xz) with z being the range coordinate.
An initial acoustic field uo(x)=u(x,O) is assumed to radiate into the z>O half plane. The local
properties of uo(x) can be measured by the windowed Fourier transform (WFT), defined as,

U0 (X, ) = f uo(x)w*(x - .)e-''dx (1)

where o) is the radial frequency and w(x) is a square integrable window function centered
around the origin. The two variables function Uoxi,ý) describes the local spectral
(directional) properties of the field in the neighborhood of i. The field may be reconstructed
from its local spectrum via,

uo(x) 2= N 2 J Uo (X-)w(x- X)e-•'xd'-# (2)

where N2 is the L2 norm of the window function. Equation 2 describes the field as a
superposition of shifted (by i) and modulated (by 4) windows. We may consider the
propagation of the field via Eq. (2). This is done by propagating the shifted and modulated
windows that, evidently, give rise to shifted and tilted beams. The field is therefore
described by a superposition of beams, b(x,z;,), tagged by their initial location and
direction variables,
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u(x,z) = 0) Jo( )xz;X,#Add (3)

The summation is done simultaneously over locations and directions, hence the term phase
space representation. With properly chosen windows, the windowed transformation favors
a priori the beams propagating along the local preferred direction of radiation of the initial
field, thereby establishing effective localization around skeletal lines in phase-space that
coincide with the geometrical acoustic description of the field [3,4]. Unlike geometrical
theories, this localization is not due to high frequency asymptotics and is uniformly valid.
Unlike plane waves and point sources, a beam-type propagator, when properly chosen, is
localized in direction and location. It stays confined within a propagation distance related
to its parameters-the Rayleigh distance. Wave events occurring within this range can be
treated locally. Moreover, the specific portion of the local spectra that participate in a wave
event is well confined in phase-space within regions that can be identified a priori.
However, every beam type propagator is bound to diverge beyond its Rayleigh distance and
eventually loose its localization properties [3].

3. The Combined Methodology

By combining the two approaches together, that is: by marching localized beam-type
spectrum over steps that are shorter than the typical diffraction length of the propagator,
one may describe the field as an ordered sequence of localized events over arbitrary
propagation distances [4). This is obtained by operating with Eq. (2) on Eq. (3) after a short
propagation distance, say Az (not necessary with the same window!). One obtains for the
local spectrum at Az,

U(,AZ) = ff X (4)

where the phase-space propagator B(X, ;xooZ) is obtained by the WFT of the
propagating beam [4]. It measures the degree of coupling between a phase-space
constituent at the initial plane and a phase-space constituent at the next plane. In ray theory,
this coupling is different from zero if and only if the two points in phase-space, (x, ýo)
and U_, ý), belong to the same ray trajectory. However, the coupling measured by
B(X,4;XO,4 0 ,Az) is strong for phase-space points that belong to the same ray, and it
decreases exponentially (Gaussian) in the regions of phase-space that do not form together
a ray trajectory. Moreover, since each phase-space constituent occupies a well-confined
region, its propagation and its coupling to the constituents at the next plane are governed
by the medium properties in its close neighborhood. Finally, each phase-space constituent
in a give plane can be treated independently of the others at that plane.
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3.1 The Propagator

A general expression for B in nonhomogeneous media is not available but as we shall see
much can be learned by evaluating it for a homogeneous medium using the Gaussian
window,

X2 (xIL') 2  (5)

w(x) = e-2P = e 2A2 ;A2 =P/(2•rAv)

where P is a parameter that determines the window width, A. is the wavelength, v is the wave
velocity and A is the window width in units of a wavelength. Reference [4] provides an
explicit expression for of B in a homogeneous medium in terms of a single Fourier integral
and an asymptotic analysis of its properties. We shall summarize the important results. The
propagator is essentially a Gaussian in phase-space, centered around,

=v =x- Aztan g ; si=nsin-' , = A- 0 + , (6)

(7)

with typical widths along the .• and 1 directions,

given by,

A = A(A + A 2 [11 + (A•z / ZR) 2 ]112 (8)

A (A2 + A2 )11 2 / (_/8AiVAoA,) (9)

where ZR = 2irAA(Y + A2)cos'3 0, and where Ao and A1 are the normalized window
widths in the first (initial) and second plane, respectively. Equations (6) and (7) describe
localization around a ray trajectory. From Eq. (8) it is seen that the propagator stays
confined if the step size is short relative to ZR which can be interpreted as a diffraction
distance in phase-space. Figures la and lb show a plot of IBI in the dimensionless
(Xo / A,V!o) plane for the point (0.,0.4) in the (i / A,,vj) plane. We have used identical
windows with Ao=AI=2,, thus the diffraction length is 48X. Figure la shows the
propagator for Az=2,. The outer contour shows 5% of the maximal magnitude.
Localization around the "skeletal point" defined by Eqs. (6a) and (7a) is in evidence. In
Fig. lb the step size has been increased to 24k. As a result localization has been degraded.
The area of integration in the (x,, ý,-) plane in Eq. (4) may be confined a priori to the
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effectively contributing domains depicted in Fig. 1. These domains are readily obtained by
simple geometrical consideration and by the use of the algebraic expressions in Eqs. (8) and
(9). The consequences are of fundamental importance: only a small neighborhood (around
the skeletal point) of the phase-space in the initial plane has to be considered for the
treatment of each phase-space point of the next plane.

3.2 Pressure Release Surface

The use of the homogeneous medium propagator in the presence of a pressure release
surface is facilitated by a simple local mirroring operation. If the surface is located at x=O,
then one may show that U(., ')=-U(-x,-•) Thus, the presence of the surface can be
augmented in Eq. (4) by integrating only for .1 > 0 and performing a mirroring about I = 0.
Due to locality, only a narrow strip of the order of A. has to be mirrored.

3.3 Phase-Space Filtering

In the context of wave propagation, phase-space filtering can he interpreted as a process by
which we impose local radiation conditions. Perhaps the simplest example is the modeling
of an infinitely extended bottom (or artificial computational boundary) where one would
like to suppress all the wave constituents that propagate near the bottom and facing down,
without effecting the upward or downward propagation in the water column. The nature of
the problem requires an explicit simultaneous control of both directional and spatial
structures of the field. This clearly does not conform well with global approaches. As a
result, spurious reflections from the artificial boundary that decay like an inverse
polynomial are unavoidable. Local phase-space formats are the natural framework for
imposing local radiation conditions since they assign local directions to each small
neighborhood in the problem. The filtering operation in phase-space is manifested by
restricting the region of integration in Eq. (4) to a subdomain D of the (1, ýo) plane,

TDU(,AZ) ff . (10)

A measure of how well this operation imposes local radiation conditions is the value of the
filtered local spectrum for (X, ý) E1 where 5 is the complement of D in the (X, ý) plane.
This may serve also as a measure for the degree of spurious reflections. It can be shown that
(see [4] for details),

ITD(X Az <_ 2 1 1ull max e-2(i-r)L?
5 (11)0)e

L? O)2/2AF + (X-o- X Aztan )2f2A2?
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for every 0 > E < 1 and (X, ) e 5 , where j1ul is the L2 norm of the field. The filtering
operation results in an exponentially (Gaussian) decaying tails (spurious reflections) in
phase-space. The filtered region is mapped from the initial plane along ray trajectories and
the rate of decay cf "he spurious effects depends on the widths A. and Af This operation
influence wave events only when they "arrive" to the relevant region and practically does
not penetrate to the region of interest.

3A.4 Point Source in Phase-Space

In our model, a point source is characterized by a collection of beams, emanating from a
confined spatial neighborhood and radiating to all directions. In phase-space, this is
manifested by a strip centered around the line .i = x' where x' is the coordinate of the
source. The phase-space distribution of a point source with x'--O using Gaussian window of
width 3X is shown in Fig. (2). The distribution is exponentially (Gaussian) decreasing in
the .9 direction away from X = x' (see [4]).

4. Numerical Example

The properties of the new scheme are demonstrated here via test case No. 1. An initial
distribution of a point source in phase-space has been propagated from the source plane
down to range of 266X, using the asymptotic propagator with Gaussian windows of width
X and step size of 2X. Three typical distributions, at ranges of 10;l, 60X and 266X are
depicted in Fig. (3). Local mirroring has been performed in the strip -20A. _< i 5 0
(approximately 3A 1 .). The computational boundaries in Eq. (4) are those shown in the
figures. Nevertheless, spurious reflections were practically zero (note that the receiver
depth is 106.4AX). At short range (z=10)l, Fig. 3a), two distinct phase-space distributions,
centered around the skeletal lines -= ±9.33A.. + z tan 0 (& = sin-' v) are easily identified.
These lines represent, respectively, the direct and reflected ray families. With increasing
range, the distribution evolves by a clockwise rotation and the skeletal lines become closer
(Fig. 3b). The ray families interfere in the region between the skeletal lines. Finally, at
z=266XL, the skeletal lines almost overlap and the phase-space representation, still
concentrated around these lines, describes essentially the interference pattern of the two ray
families. The field at the receiver has been computed from U(X, ý,AZ) via Eq. (2) and the
transmission loss curve is shown and compared to the analytic solution in Fig. 3d (dashed
and solid lines, respectively). The curves agree very well for ranges that are larger than 6OX,
that corresponds to radiation angles of about 600. The discrepancy at short ranges is due to
the use of the asymptotic propagator.

The localization and filtering philosophy has been employed in all computations. We first
comouted the location of the skeleton, then, computation of Eq. (4) was performed only for
the (1, ) that lie close to the skeleton (see [41 for details). Moreover, the integration in the
- plane was confined a priori to the regions of dominant contribution of the

propagator (see Fig. I and Eqs. (6)-(9)). Test computations of the same problem, but
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without any prior confinement or filtering were also performed. The results were, of course,
the same.
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PE-Based Spectral Decomposition
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ABSTRACT

In a layered waveguide, the field p satisfying the acoustic wave equation is exactly related
to the field V satisfying the standard parabolic equation (PE) by an integral transform. The
non-local relationship between p and V maps into a local one in the spectral (horizontal
wavenumber) domain. This unique spectral relationship forms the basis of an efficient and
accurate method of postprocessing PE solutions into solutions of the wave equation.
Because this method of obtaining p from V is exact, it is not restricted to low-angle
propagation, small changes in the refractive index, or judicious choice of reference
wavenumber, conditions usually associated with the standard parabolic approximation. PE-
based spectral decomposition can also be a useful tool for analyzing fields propagating in
range-dependent waveguides. In this case, the modal amplitudes and horizontal
wavenumbers of V can be determined exactly by spectral analysis of a suitable 'V-field
correlation function. The amplitudes and wavenumbers of the normal modes of p are then
obtained by simple mapping rules.

1 INTRODUCTION

Predictions of low-frequency sound propagation in range-dependent environments are
routinely carried out using models based on the parabolic equation (PE) approximation
[1,21. This is mainly due to the fact that the PE can be solved numerically using efficient
marching algorithms. Other full-wave approaches capable of treating propagation in range-
varying media, such as coupled-modes, are more computationally intensive [3]. One
disadvantage of using PE methods is that because they provide numerical solutions to the
total acoustic field at each point on a computational grid, information on the propagation
of individual spectral components (modes) is not readily available. Such information can
facilitate the interpretation of the acoustic field behaviour in complex propagation
situations.

The present paper describes a PE-based spectral method suitable for analyzing fields
propagating in waveguides. The method is based on an exact relationship between the
solution p of the wave equation and the solution V of the standard parabolic equation. This
relationship between fields takes the form of a non-local integral transform [4]. In contrast,
the horizontal wavenumber spectra of these fields are related locally. This unique spectral
relationship forms the basis of an a posteriori method of mapping Vf-fields into p-fields [5].
It is also possible to determine the modal amplitudes of p by spectral analysis of a certain
Vf--field correlation function. Although this connection between p and V fields is restricted
to propagation in range-independent environments, the spectral approach can be used to
determine the modal properties of fields propagating in range-dependent environments.
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Previously, Jensen and Schmidt [6] presented a hybrid scheme for numerically
decomposing the PE field at a given range into its spectral components versus horizontal
wavenumber. The decomposition was accomplished by treating the PE field versus depth
as a source field in the SAFARI code [7,8]. This code constructs the "local" (range-
independent) Green's function corresponding to the PE source field excitation. This "local"
Green's function is precisely the spectral decomposition in horizontal wavenumbers of the
PE field versus depth at the given range in the waveguide. By carrying out this
decomposition at different ranges in a wedge-shaped ocean, they were able to identify and
study the propagation of individual modes in both adiabatic and coupled-mode situations.
A similar method has recently been proposed by Gilbert et al. [91 based on an operator
formalism [10].

In contrast to this hybrid approach, Feit and Fleck [11] developed a modal decomposition
scheme based directly on the "propagating beam method" to study the propagation of light
in optical fiber waveguides. The propagating beam method in optics is equivalent to the PE
method in underwater acoustics. Their PE-based modal decomposition scheme is based on
three related concepts: (1) an exact relationship between PE modes and normal modeq;
(2) an efficient split-step marching algorithm for solving the PE; and (3) spectral analysis
of a suitably-defined PE correlation function. Items (1) and (2) are well-known in the
underwater acoustics literature [4,5,12]. Although items (1) and (3) assume propagation in
range-independent waveguides, the PE-based scheme can be applied in a range-varying
environment [13,14]. Moreover, this method of modal decomposition does not depend on
the split-step algorithm of item (2) to solve the parabolic equation.

In the next section, we provide a brief development of the theory underlying the PE based
spectral decomposition method. Three related postprocessing topics are treated: (1)
converting numerical PE solutions into solutions of the wave equation for range-
independent media; (2) decomposing pressure fields versus depth into their normal mode
components for range-independent media; and (3) extending the PE-based modal
decomposition scheme in (2) for use in range-dependent environments. Each topic is
illustrated with numerical examples.

2 THEORETICAL BACKGROUND

2.1 Parabolic Approximation

Let the region z > 0 (z positive downward) of a cylindrical coordinate system (r, 0, z) be
occupied by an oceanic waveguide, and let p(r, z) exp(-iao/) represent the azimuthally
symmetric, time-harmonic acoustic field due to a point harmonic source located at r = 0,
z=zo. For r > 0, the acoustic pressure p(r, z) is assumed to satisfy the scalar wave equation

1 •(r op) 1 o-2p + kon p = 01)

trd J+ d-Z

where ,a(r, z) = colc(r, z) is the refractive index, c(r, z) is the sound speed, and ko = o/co is
an arbitrary reference wavenumber. Equation 1, which underlies all of the standard linear
propagation models of ocean acoustics (multipath expansion, fast field, normal mode,
parabolic equation) [15,16], can be generalized to accommodate the effects of nonzero
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absorption a and variable density p. In addition, the physically meaningful solutions to
Eq. 1 must sat"sfy appropriate boundary conditions.

It is well known [ 1,2] that instead of solving Eq. I for p the outgoing pressure in the far-
field (kor >>1) can be determined by solving the "one-way" evolution equation

_ =iko(Q-_)V (2)
dr

where

p(r,z) = (kor)-112 Vr(rz)exp(ikor) (3)

and Q denotes the pseudo-differential operator

2 1 2

While strictly only valid for horizontally stratified media, n = n(z), Eq. 2 forms the basis for
obtaining PE predictions of underwater sound propagation in waveguides that are range-
dependent. This is accomplished by treating the environment at each range to be locally
independent of r over a small interval Ar so that Eq. 2 can be integrated to obtain the formal
result

•V(r + Ar, z) = exp{ikoAr(Q - 1)} ty(r, z) (5)

Since the backscattered field is neglected in this "one-way" equation, the environment can
be updated at each range step to accommodate range-varying media (for a recent discussion
on this procedure, however, see [17] [18]).

Although Eq. 5 can be marched outward in range, it is computationally demanding to make
use of the full matrix representation of the exact square-root operator Q [19,20]. The
numerical efficiency of the PE is achieved by approximating Q with an operator that can
be represented by a matrix that is diagonally banded. Different approximations to Q lead to
different parabolic equations. In particular, the truncated binomial series expansion of Q
due to Tappert [1,2]

-=I(Q2 - 1) (n' - 1)- 2•o (6)

leads to the standard parabolic equation of underwater acoustics,

298 = Wko rn2 _sh i d 2V7
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The usual justification for the approximation in Eq. 6 relies on the interpretation that for
small propagation angles and small variations in the refractive index, (1/2XQ 2-1) is, in
some sense, small. It should be noted that for any approximation to Q, Eq. 3 only
approximately relates the PE field variable Vf to the acoustic pressure p. Even the recent
"wide-angle" approximations to Q based on a Pade series representation [21] will give rise
to phase errors beyond some range.

2.2 Exact Relation between Vf and p

For range-independent media, DeSanto [4] has shown that Eq. 3 can be regarded as the first
term in a stationary phase expansion of an exact integral transform relating p to W,. This
exact integral relationship is given by

p(rz) = (2 'id) 1 f w(rotexp(!2t r2 +1 t (8)
0

It is worthwhile noting that Eq. 8 does not require (112)(Q 2-1) to be small. Hence, accurate
numerical solutions to the standard parabolic equation can, in principle, be mapped into
accurate numerical solutions to the wave equation. Moreover, since Eq. 1 is independent of
reference wavenumber, it is evident that any value of ko can be used to solve Eq. 7 for W
and used in Eq. 8. That is, although W depends strongly on ko, the integral transformation
described by Eq. 8 maps every ko-dependent W--field into the same p-field.

Thomson and Wood [5] have shown that the non-local relationship expressed by Eq. 8
becomes a local one after transformation into the appropriate horizontal wavenumber
domains of p and yr. This spectral connection is given by

1 i
g(k,z)=- L-f(s,z), (9)

where g, the Hankel transform of p, andf, the half-range Fourier transform of y, are defined
respectively by

g(k,z) = f p(r,z)Jo(kr)rdr (10)
0

fPs, Z) = f Wg(t, z) exp(-ist)dt .(1

0

The horizontal wavenumbers k and s are related by the nonlinear (but local) mapping

k=k k 2s (12)
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This local relationship can be exploited to develop an efficient and accurate method of
postprocessing solutions of the standard PE into solutions of the acoustic wave equation
[5]. This postprocessing approach is shown schematically as the clockwise route in Fig. 1.

Instead of applying Eq. 8 directly to process V'tz) into p(rz), as indicated in the
counterclockwise route in Fig. 1, we first use Eq. 11 to determine the PE kernelfts,z) as a
function of horizontal wavenumbers. This PE kernel function can then be mapped into the
Green's function kernel g(k, z) for the wave equation using the local relations in Eq. 9 and
Eq. 12. Finally, the solution p is recovered from a knowledge of its Green's function by
applying an inverse Hankel transform, namely

p(r,z) = f g(k,z)Jo(kr)kdk . (13)
0

In practice, both the half-range Fourier transform in Eq. II and the inverse Hankel
transform in Eq. 13 are carried out on equispaced data using the fast Fourier transform
(FFT) algorithm. Because the mapping in Eq. 12 from s to k is nonlinear, interpolation
between wavenumbers is necessary prior to applying the inverse Hankel transform.

2.3 Modal Decomposition of Vt- and p- Fields

For range-independent waveguides, the sound speed c, density p and absorption a are
functions of depth z only and Eq. 7 can be solved by separation of variables. In this case, it
is straightforward to use Eq. 8 to establish the spectral connection relating the PE modes of
Eq. 7 to the normal modes of Eq. 1. The resulting expansion into PE modes can easily be
verified to be [4]

V(r,z) = Xajuj(z)exp(isjr), (14)

where the depth-dependent mode functions uj satisfy the eigenvalue equation

d 2U + (k,,n 2 (Z)- k)u 0, (15)
dz2

and the aj are the mode amplitudes. The PE modal wavenumbers sj are given by

ki -k2 (16)
'y 2ko,

Equation 15 is recognized [4,15,16] as the depth-dependent equation associated with the
normal mode eigenfunctions of the acoustic wave equation. The horizontal wavenumbers
kj are the corresponding normal mode eigenvalues. The uf's can be normalized to form a
complete orthonormal set. In ocean acoustics, the usual boundary conditions imposed on
the fields satisfying Eq. 15 require each uj to vanish at z = 0 and remain bounded as z -4 oo.
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As a result, Eq. 14 admits only a finite number of propagating modes. It can be shown
[15,16] that each mode amplitude a- is proportional to uz ) Thus, if a point source is
located at a null of the jth mode, mode j will not be excited. Similarly, if a point receiver is
placed at a null of the jth mode, mode j will not contribute to the total field there.

Substituting Eq. 14 into Eq. 8 and using Eq. 16 yields

1 " 4ik ikor• dt
p r z) = 72-•fajuj(z)lexpj -2-k +

= - ? ajuj(z)H(o)(kjr) (17)
J

•--or J.(a,•k. /,j (z)exp(ik, r)

J

In the sequence leading to Eq. 17, both the integral representation of the Hankel function
Hol)(kir) [22, page 956, entry 8] and the first term of its asymptotic expansion [22, page

962, entry 3] were used. Equation 17 is the well-known modal solution for the field p in a
layered waveguide. It is evident from this result that the amplitudes aJ and wavenumbers
k* of these normal modes can be obtained a posteriori from the amplitudes aj and
wavenumbers sj of the PE modes by the mappings

aj.= a1 ýk,, 1k, (18)

and
kj = o~l 2s.

kk . (19)

2.4 --Field Correlation Function

From the preceding analysis, it is clear that the modal properties of V' lead directly to the
modal properties of p. An efficient algorithm for modally analyzing V has been developed
by Feit and Fleck [ 11] for the case of propagation in optical waveguides. Their method can
easily be adapted to analyze the modal properties of fields propagating in range-dependent
waveguides [ 13,14].

Consider the PE field correlation function 0 defined by

O(R,t)= W* (R,z) V'(R + t,z)dz (20)

0

Here VJR, z) is the complex conjugate of the field at range R used to initiate the PE
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solution. The sequence of values 4D(R, t ) for t1 = IAr, I = 0,..., L--I is readily computed
during the step-by-step numerical solution of Eq. 7. Substituting the modal representation
for yvgiven in Eq. 14 into the defining integral for 0 given in Eq. 20 and noting that the
uj's are orthonormal, it is readily shown that the PE correlation function assumes the
analytical form

4(R,t) = XIajl2 exp(isj(t - R)). (21)
i

On taking the Fourier transform of Eq. 21 it follows at once that

!F(0} f 0(R,t)exp(-isr)dr
0 (22)

= ,IajI2 exp(-isjR)8(s- sj)
i

Thus it is observed that spectral analysis of the PE amplitude correlation function 4 should
produce peaks in the spectrum at the wavenumbers s* of the PE modes. The magnitude of
the peak corresponding to the jth mode is proportioinal to the power lajI2 contained in that
mode. The amplitudes IaQ12 and horizontal wavenumbers k- of the corresponding normal
modes of p are recovered using Eq. 18 and Eq. 19 respectively. If a fast Fourier transform
(FFT) routine is used to estimate the spectrum of (, the resolution of the PE modal
wavenumbers is determined by the range interval LAr over which the numerical solution of
Eq. 7 is performed, i.e., As = 2xc / LAr. For a given number of steps L, this resolution may
be improved by using line-shape fitting techniques [I I] (i.e., windowing) or zero-pad
interpolation.

2.5 Application to Range-Varying Media

The application of the PE-based modal decomposition method to propagation in
range-varying media is straightforward. Suppose Eq. 7 has been solved for yu(r,z) in
the range-dependent waveguide shown schematically in the upper part of Fig. 2.
Here the range-dependence is manifested in the variable-depth bathymetry. The
subbottom region is taken to be lossy (a * 0).

Because the waveguide properties vary with range, the modal amplitudes and
wavenumbers also vary with range. The modal structure of the field at a given range R, say,
can be found by using the complex field y(R,z) to initialize a range-independent PE
calculation for an environment characterized by the "local" waveguide properties at the
range R. This is illustrated at the bottom of Fig. 2. For this range-independent calculation,
the numerical PE solution is marched out to a range determined by the required spectral
resolution. The correlation function 0D for this new PE field can then be analyzed spectrally
to determine the mode properties of the initial data iV(R,z). There is one technical detail that
should be mentioned. For a lossy waveguide, the field V(Rz) will have been affected by
attenuation in the region 0 < r < R. In order to obtain a meaningful spectral decomposition
of Y(R,z), it is necessary to set a = 0 during the range-independent PE calculation while
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forming the data I) for r = R. Otherwise, the magnitudes of the modal peaks will be
underestimated. This detail is illustrated in the bottom of Fig. 2.

2.6 Remarks on Decomposing VLA Data

The numerical solution of Eq. 7 is undertaken on a fine computational grid of spacing Ar
in range and Az in depth that spans the entire cross-section of the oceanic waveguide. For
modeling propagation from a point source, simple starting fields K(0,z) can be used [1,23].
Since Eq. 2 is solved recursively, it is evident that the field at a given range R, V(R,z),
contains all the spectral information necessary to continue propagating the field for r > R.
For a range-independent waveguide, the horizontal wavenumber spectrum associated with
this given field is invariant with range. It is precisely this property of the field in the
waveguide that allows the PE-based modal decomposition to be carried out.

Accurate PE transmission loss calculations usually involve a trial-and-error procedure to
determine suitable values of ko, Ar and Az [24]. As seen in the mappings of Eq. 18 and Eq.
19, however, the choice of ko is taken into account in the spectral analysis of the field. On
the other hand, the computational grid spacings used to solve PE are determined mainly by
two factors: (a) the number of propagating modes, which depends on the acoustic
frequency and the environmental properties of the waveguide, and (b) the algorithm used
to solve Eq. 7. For shallow-water environments, where the low-frequency propagating
fields are usually bottom-limited, it is typical to use Az, Ar << X where X is the acoustic
wavelength in water.

The above observations suggest that a measured pressure field versus depth, obtained using
data from a vertical line array (VLA) for example, can be used to initiate a PE-based modal
decomposition. Such mode filtering is a necessary first step in applying matched-mode
processing to localize a source in an oceanic waveguide [25]-[28]. In general, it is not
practical to build VLA's that have hydrophone spacings that are as small as the depth grid
spacings required by the PE model. Also, with any VLA, it is not possible to sample the
pressure field outside of the water column, i.e., in the bottom. However, accurate results
with the PE-based modal decomposition method can still be achieved if the measured VLA
field is first interpolated between hydrophones and extrapolated into the bottom on a depth
grid that meets the requirements of the PE model. Numerical evidence supporting this
claim as well as a description of suitable interpolation and extrapolation algorithms is given
in [29,30].

3 NUMERICAL EXAMPLES

In this section, three numerical examples are used to illustrate the above postprocessing
methods. The first two examples deal with propagation in a range-independent
environment. The third example considers range-dependent propagation in a waveguide
with a variable-depth bottom.

3.1 Example 1

The first example demonstrates the capability of the postprocessing method for
transforming numerical solutions of the standard PE into solutions of the wave equation for
a standard benchmark problem. This example was introduced as test case 2b in the first PE
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Workshop held in 1981 [2]. Figure 3 shows the environmental configuration for this range-
independent test case.

A 25-Hz point source is located at a depth of 500 m in the upper layer of a bilinear sound
speed profile. This upward refracting ocean overlays a uniform half-space whose
properties match those at the water/bottom interface. For the PE calculations, an absorbing
layer was inserted below z = 1750 m to suppress unwanted reflections from the bottom of
the computational grid. With this profile, all acoustic rays with grazing angles 101 < 300 are
confined to the water column.

Figure 4 shows a set of transmission losses,-101ogl 0 Ipl2, computed as a function of range
for a receiver located at a depth of 500 m. The reference curve (dashed line) was computed
using the SAFARI [8] code. In the upper panel, the solid curve was computed by solving
Eq. 7 using the split-step Fourier algorithm [23] on a computational grid with horizontal
step-size Ar = 25 m and vertical step-size Az = 4 m. The reference sound speed co = 1300
m s-1 used in this calculation lies well below the phase velocities of the propagating modes.
It is evident that the standard PE does not provide a good approximation to the wave
equation in this case. In the lower panel, the solid curve shows the result of postprocessing
the standard PE curve using the clockwise y' -4 p route depicted in Fig. 1. It is apparent
that this method of computing the solution to the wave equation is in excellent agreement
with the reference solution.

Similar transmission loss comparisons are shown in Figs. 5 and 6 using values of co equal
to 1500 m s-1 and 1700 m s respectively to solve Eq. 7. It is clear that the unprocessed
standard PE solutions are very dependent on the value of c used. On the other hand, the
postprocessed PE solutions are in excellent agreement with tle reference solution, which is
independent of the parameter co. These calculations support the claim that the
postprocessing algorithm gives results which are independent of angle of propagation, size
of the index of refraction, and value of reference sound speed used.

The above results consider propagation losses out to a maximum range of 333 wavelengths.
The accuracy of the reconstructed fields is evident and confirms the accuracy with which
the PE was solved using the split-step algorithm. Since any "wide-angle" evolution
equation will give rise to phase errors beyond some range, it is interesting to examine the
accuracy of the postprocessing method at greater ranges. In Fig. 7, comparisons are shown
for the range interval 60 to 80 km, or 1333 wavelengths for this example. A value of co =
1500 m s- was used in the PE calculations. It is seen that the postprocessed PE method
continues to provide accurate reconstructions at these ranges.

3.2 Example 2

Environmental parameters for the second example were chosen to represent the shallow
waters of the Canadian Arctic continental slope [31]. These data were used previously to
study PE-based decomposition of VLA data [29,30]. The environmental and physical
parameters for this example are given in Fig. 8. Although the sound speed profile in the
water is upward-refracting, at 25 Hz most of the energy interacts with the high-speed
bottom. Note that because c, p, and cc are all discontinuous across the ocean-bottom
boundary, the operator (l/2)(Q2-l) in Eqs. 6 and 7 needs to be modified accordingly near
the ocean/bottom interface.
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Figure 9 shows a plot of transmission loss versus depth produced using the SNAP normal
mode model [32] at a distance of 50 km from the source. This curve represents the coherent
sum of the twelve propagating modes that are supported in the waveguide at this frequency.
The SNAP calculations were carried out using 512 equispaced receivers depths spaced Az
= 1.953125 m apart. It is evident that most of the energy in these modes is confined to the
water column at this range.

Using co = 1500 m s-1 and Eq. 3, the data in Fig. 9 were used to provide an initial field to
the standard PE model. The PE solution was propagated to a range of 40.96 km using a
finite-difference Crank-Nicolson algorithm [23] and a range grid step Ar = 5 m. The
resulting 8192 points of the correlation function 0 were processed with a hanning window
and then zero padded to 215 points before taking an FFT to produce the horizontal
wavenumber spectrum. This spectrum is shown in Fig. 10. For comparison, the modal
amplitudes and wavenumbers computed using the SNAP model are indicated by dots (The
SNAP code was modified in order to remove the dependence of the spectral results on
receiver depth. This was done by removing the normalized modal eigenfunction un(z) from
Eq. (25) in [32]). It is clear from the results in Fig. 10 that the PE-based modal
decomposition method is able to recover the modal amplitudes and wavenumbers from the
SNAP pressure field. For this example, the equivalent angle of mode 12 is 430 and the
acoustic impedance increases by a factor of 2.75 across the water/bottom interface.

3.3 Example 3

The third example illustrates the effect of a common range-dependent feature of ocean
environments, namely, the variation of water depth with range. In recent years, sound
propagation over a constant slope has received considerable attention [3,6,33]. The
particular model environment used here was introduced by Jensen and Kuperman [33] to
demonstrate the capability of the PE method for studying upslope propagation in a wedge-
shaped environment. Since this example features a penetrable bottom, the upslope
propagation is associated with non-adiabatic conversion of energy from the discrete to the
continuous mode spectrum. Figure 11 depicts the environmental and physical parameters
for the wedge example.

A 25-Hz source is located at r = 0, z = 112 m in a water layer of depth 200 m. This
waveguide is range-independent for the interval 0 < r < 5 km. Beyond r = 5 km, the bottom
slope changes to the constant value of 1.550 to form a wedge whose apex is at a range of
12.391 km. The computational grid sizes Ar = 5 m and Az = 0.5 m were used for the finite-
difference PE calculations. Normal mode analysis [33] indicates that three propagating
modes can be supported in the 200-m depth part of the waveguide. By placing the source
near the null of the second mode, only modes 1 and 3 are excited.

Figure 12 displays contours of transmission loss for this wedge-shaped environment. The
contour levels were chosen to illustrate the main features of the field behaviour in this
situation and vary from 63 dB to 90 dB in 3-dB intervals. The uncontoured regions in the
water indicate losses less than 63 dB whereas the uncontoured regions in the bottom
indicate losses greater than 90 dB. The prominent downward beam in the vicinity of the
source corresponds to the radiation of the "continuous source modes" into the bottom.
Within the region 0 < r < 5 km, the field in the water exhibits an interference pattern
associated with the two propagating modes. As the sound propagates up the slope, two
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more well-defined beams are seen to penetrate the water-bottom interface. The upslope
ranges to these beams correspond to the cutoff depths of the two propagating modes. As
pointed out by Jensen and Kuperman [33], the cutoff of each mode is not abrupt. In this
sloping-bottom environment, the finite distance over which cutoff takes place provides an
aperture for radiation of a beam into the bottom.

Figure 13 shows the PE-based modal decomposition results for the range-independent
portion of the waveguide. The upper panel shows the contoured levels of transmission loss
for this region while the lower panel shows the spectral decompositions of the field at the
specific ranges r = 0, 1, .... 5 km. Because this portion of the waveguide has a flat bottom,
the wavenumbers of the two propagating modes do not vary with range. The peak at the
higher wavenumber corresponds to mode 1. The other peak in the spectrum corresponds to
mode 3. At r = 0, the power is nearly equally distributed between the two modes. For r > 0,
the spectral power has been normalized to the power at zero range. It is evident that both
modes lose power as they propagate down the waveguide, with mode 3 losing energy at a
greater rate than mode 1. This loss of power in the propagating modes is due to the presence
of absorption (x * 0) in the bottom half-space. Since the decaying "tail" of mode 3 extends
deeper into the bottom than the "tail" associated with mode 1, the power in mode 3 is
affected more by this absorption. This larger modal attenuation coefficient can also be
understood by appealing to the well-known ray-mode analogy [34] whereby the equivalent
ray associated with mode 3 propagates at a steeper grazing angle than the ray associated
with mode 1.

The PE modal decomposition results for the range-dependent portion of the waveguide are
shown in Fig. 14. The main features in this case are the variation in modal wavenumbers
with range and the conversion of mode energy from the discrete to the continuous spectrum
at cutoff. Mode 3 reaches the cutoff depth between r = 6 and r = 7 km where its spectral
energy is radiated into the continuous spectrum and is removed from the waveguide.
Moreover, as mode 1 propagates upslope, it is seen that its wavenumber shifts to lower
values. Because the modal attenuation increases as the horizontal wavenumber decreases,
the amplitude of this mode is observed to decay with range until it reaches cutoff between
r= II andr= 12km.

4 SUMMARY
A novel method was presented for carrying out the spectral decomposition of fields
propagating in range-dependent waveguides. The method makes use of an exact, nonlocal
relationship connecting the solution p of the wave equation to the solution Wof the standard
parabolic equation for range-independent waveguides. In the spectral domain, this
relationship is a local one and forms the basis of an algorithm for generating a solution to
p from a numerical solution to V/. In addition, it was demonstrated how the spectral
properties of a suitably-defined PE field correlation function can be used to find the
horizontal wavenumbers and mode amplitudes associated with the normal modes
propagating in both range-independent and range-dependent waveguides. Comparisons
with reference solutions for layered media demonstrated the accuracy of the PE-based
spectral method. In particular, it was shown that the postprocessed PE results were not
limited to low-angle propagation, small changes in the refractive index, or to a judicious
choice of reference sound speed. Although the upslope wedge example represents
essentially adiabatic propagation conditions, the PE-based decomposition method is
applicable to situations where mode coupling is important.
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Figure 1. Postprocessing algorithm for numerically computing p from V.
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Figure 2. Application of the PE-based modal decomposition method to the field y(R, z)
in a range-dependent waveguide.
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Figure 3. Physical and environmental parameters for example 1.
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Figure 4. PE and SAFARI transmission loss comparisons for example I showing (a)
standard PE (before) and (b) postprocessed PE (after); co = 1300 ms- 1 .
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Figure 5. PE and SAFARI transmission loss comparisons for example S showing (a)
standard PE (before) and (b) postprocessed PE (after); co = 1500 m s-I
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Figure 6. PE and SAFARI transmission loss comparisons for example I showing
(a) standard PE (before) and (b) postprocessed PE (after); co = 1700 m s7-1.
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Figure 7. PE and SAFARI long-range transmission loss comparisons for example I
showing (a) standard PE (before) and (b) postprocessed PE (after). co = 1500 m s-1 .

PE Workshop !! 315



PE Workshop II: Part 3 - Contributed Papers

Sound Speed (mis)
1435 1440 1445 1450 1455 14600 1 I I I I I

100 UHz

200

300

400

500

p = 2.0 g/CM3

a= 0.5dB /A

Figure 8. Physical and environmental parameters for example 2.
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Figure 10. PE and SNAP modal decomposition comparison for example 2.
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Figure 13. PE modal decomposition (lower panel) and corresponding loss contours
(upper panel) in the flat-bottom region of example 3.
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Figure 14. PE modal decomposition (lower panel) and corresponding loss contours
(upper panel) in the sloping-bottom region of example 3.
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The OPTAMAS System
[Editors' Notes]

The transmission loss model in the OPTAMAS system was used to supply some of the
results contained in the PE Workshop II proceedings. (No representative of the
OPTAMAS system was able to attend the workshop; these results were supplied by Nils
Paz [Systems Integrated] after the workshop had concluded.) Since some members of
the underwater acoustic research community may not be familiar with the OPTAMAS

system and its design criteria, it was felt that a short discussion of the system would
be in order. The following information was obtained from the OPTAMAS User's
Guide (1990).

OPTAMAS is an acronym for the Qptimization of the Performance of Theater ASW
Mobile Acoustic Sensors. The OPTAMAS system was originally developed in 1988 to
provide acoustic performance predictions, to manage contacts of acoustic targets, and
to aid decisions that involve asset-allocation in searches over a large ocean area. It
also combined environmental data, sensor data, and target data that cover a large
ocean area.

The OPTAMAS system was developed by integrating several existing software and
database products to provide a system consisting of an acoustic propagation model, a
beam noise processor, an analyzer for in situ BT measurements to produce a 3-D grid
of the sound speed field based upon environmental data bases, and an optical scanner
and color copier-all of this operating on a low-cost, high-performance workstation.
With the OPTAMAS system, the ASW commander could easily and effectively
determine, the optimum employment of towed arrays and sonobuoy fields for
surveillance and tactical missions. The OPTAMAS system provides accurate and fast
determination of signal excess, probability of detection, target position estimation,
and search tactics for a variety of sensors and targets.

Some of the key features of the OPTAMAS system are as follows:

"* On-Site collected water column temperature profiles can be used to update the
historical sound speed data supplied via the standard Navy Generalized Digital
Environmental Model (GDEM) by using the Tactical Thermal Analysis Program (TrAP).

"* The acoustic propagation module of OPTAMAS is a vectorized version of the Navy
Standard Parabolic Equation model (Brock 1975) and based on the approach described
in the PESOGEN-II User's Manual Supplement (1990).
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"* The Wagstaff Iterative Technique (WIT) is used to provide estimates of the directional
ambient noise field from historical or near real-time collected data. This module will
produce a "noise heading rose" and an "array heading surface" which permit optimal
array-deployment-decisions to be made by the ASW operator.

"* The OPTAMAS computer-assisted search module uses the environmental acoustic data
provided by TRAP, the PE model, and WIT to provide search planning and target local-
ization information, and individual sensor system performance estimates.

The only part of the OPTAMAS system that is relevant to the PE Workshop II is the
acoustic propagation model that was used to provide solutions to the test cases. As
noted, this propagation model is a vectorized computer code of an earlier version of
the Navy Standard PE model. It is based on the approach used in the PE Solution
Generator (PESOGEN) system. Thus, it uses the split-step solution algorithm and
obtains wide-angle capability via the Thomson-Chapman formulation.

It is important to note that, as in the case of the Navy Standard PE model, the
OPTAMAS system also uses parameters that are preselected for implementation in the
operational Navy. The custodian of OPTAMAS did not change its operational
parameters for the PE Workshop II test case results nor did he change its reference
distance to the distance of 1 m as was used by all other workshop modelers. The
custodian of OPTAMAS estimates that the results from OPTAMAS will be approximately
2 dB different from the results of the other models in the PE Workshop II.

An exception was made in the size of the range steps used by OPTAMAS; the range
steps were decreased by 20 in order to minimize the choppy looking results. The
choppy "steps" in the transmission loss curves are a consequence of the OPTAMAS
system's requirement to write the results in integer format rather than floating point
format. This is done to reduce the amount of computer storage required.
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